KUKA XYZ-ABC format¶
KUKA robots use the so called XYZ-ABC format. XYZ is the position in millimeters. ABC are angles in degrees, with A rotating around z axis, B rotating around y axis and C rotating around x axis. The rotation convention is z-y′-x″ (i.e. x-y-z) and computed by r_z(A) r_y(B) r_x(C).
Conversion from KUKA-ABC to quaternion¶
The conversion from the ABC angles in degrees to a quaternion q=(\begin{array}{cccc}x & y & z & w\end{array}) can be done by first converting all angles to radians
\begin{split}A_r = A \frac{\pi}{180} \text{,} \\
B_r = B \frac{\pi}{180} \text{,} \\
C_r = C \frac{\pi}{180} \text{,} \\\end{split}
and then calculating the quaternion with
\begin{split}x = \cos{(A_r/2)}\cos{(B_r/2)}\sin{(C_r/2)} - \sin{(A_r/2)}\sin{(B_r/2)}\cos{(C_r/2)} \text{,} \\
y = \cos{(A_r/2)}\sin{(B_r/2)}\cos{(C_r/2)} + \sin{(A_r/2)}\cos{(B_r/2)}\sin{(C_r/2)} \text{,} \\
z = \sin{(A_r/2)}\cos{(B_r/2)}\cos{(C_r/2)} - \cos{(A_r/2)}\sin{(B_r/2)}\sin{(C_r/2)} \text{,} \\
w = \cos{(A_r/2)}\cos{(B_r/2)}\cos{(C_r/2)} + \sin{(A_r/2)}\sin{(B_r/2)}\sin{(C_r/2)} \text{.}\end{split}
Conversion from quaternion to KUKA-ABC¶
The conversion from a quaternion q=(\begin{array}{cccc}x & y & z & w\end{array}) with ||q||=1 to the ABC angles in degrees can be done as follows.
\begin{split}A &= \text{atan}_2{(2(wz + xy), 1 - 2(y^2 + z^2))} \frac{180}{\pi} \\
B &= \text{asin}{(2(wy - zx))} \frac{180}{\pi} \\
C &= \text{atan}_2{(2(wx + yz), 1 - 2(x^2 + y^2))} \frac{180}{\pi}\end{split}