
rc_visard
Release 1.3.0

Roboception GmbH

Jul 31, 2018

Contents

1 Introduction 1
1.1 Overview . 2
1.2 Warranty . 3
1.3 Applicable standards . 4
1.4 Glossary . 5

2 Safety 7
2.1 General warnings . 7
2.2 Intended use . 8

3 Hardware specification 9
3.1 Scope of delivery . 9
3.2 Technical specification . 10
3.3 Environmental and operating conditions . 12
3.4 Power-supply specifications . 12
3.5 Wiring . 13
3.6 Mechanical interface . 15
3.7 Coordinate frames . 16

4 Installation 18
4.1 Installation and configuration . 18
4.2 Power up . 18
4.3 Network configuration . 18
4.4 Discovery of rc_visard devices . 19
4.5 Web GUI . 21

5 The rc_visard in a nutshell 23
5.1 Stereo vision . 23
5.2 Sensor dynamics . 24
5.3 Calibration relative to a robot . 25

6 Software components 26
6.1 Stereo camera . 27
6.2 Stereo matching . 31
6.3 Sensor dynamics . 36
6.4 Visual odometry . 41
6.5 Stereo INS . 43
6.6 Camera calibration . 44
6.7 Hand-eye calibration . 50

7 Optional software components 63
7.1 SLAM . 63
7.2 IO and Projector Control . 68
7.3 TagDetect . 70
7.4 ItemPick . 79

8 Interfaces 80

i

8.1 GigE Vision 2.0/GenICam image interface . 80
8.2 REST-API interface . 88
8.3 The rc_dynamics interface . 122
8.4 Time synchronization . 125

9 Maintenance 127
9.1 Lens cleaning . 127
9.2 Camera calibration . 127
9.3 Updating the firmware . 127
9.4 Restoring the previous firmware version . 129
9.5 Rebooting the rc_visard . 129
9.6 Updating the software license . 129
9.7 Downloading log files . 130

10 Accessories 131
10.1 Connectivity kit . 131
10.2 Wiring . 131
10.3 Spare parts . 132

11 Troubleshooting 133
11.1 LED colors . 133
11.2 Hardware issues . 133
11.3 Connectivity issues . 134
11.4 Camera-image issues . 134
11.5 Depth/Disparity, error, and confidence image issues . 135
11.6 Dynamics issues . 136
11.7 GigE Vision/GenICam issues . 137

12 Contact 138
12.1 Support . 138
12.2 Downloads . 138
12.3 Address . 138

13 Appendix 139
13.1 Pose formats . 139

HTTP Routing Table 141

Index 142

ii

1 Introduction

Revisions

This product may be modified without notice, when necessary, due to product improvements, modifications, or
changes in specifications. If such modification is made, the manual will also be revised; see revision information.

Revision 1.3.0 Jul 31, 2018

Copyright

This manual and the product it describes are protected by copyright. Unless permitted by German intellectual
property and related rights legislation, any use and circulation of this content requires the prior consent of Robo-
ception or the individual owner of the rights. This manual and the product it describes therefore may not be
reproduced in whole or in part, whether for sale or not, without prior written consent from Roboception.

Information provided in this document is believed to be accurate and reliable. However, Roboception assumes no
responsibility for its use.

Differences may exist between the manual and the product if the product has been modified after the manual’s
edition date. The information contained in this document is subject to change without notice.

Indications in the manual

To prevent damage to the equipment and ensure the user’s safety, this manual indicates each precaution related to
safety with Warning. Supplementary information is provided as a Note.

Warning: Warnings in this manual indicate procedures and actions that must be observed to avoid danger of
injury to the operator/user, or damage to the equipment. Software-related warnings indicate procedures that
must be observed to avoid malfunctions or unexpected behavior of the software.

Note: Notes are used in this manual to indicate supplementary relevant information.

1

1.1 Overview

The 3D sensor rc_visard provides real-time camera images and disparity images, which are also used to compute
depth images and 3D point clouds. Additionally, it provides confidence and error images as quality measures
for each image acquisition. The sensor provides self-localization based on image and inertial data. A mobile
navigation solution can be established with the optional on-board SLAM module. The rc_visard is an IP54-
protected sensor that offers an intuitive web and a standardized GenICam interface, making it compatible with
all major image processing libraries. The rc_visard is offered with two different stereo baselines: The rc_visard
65 is optimally suited for mounting on robotic manipulators, whereas the rc_visard 160 can be employed as a
navigation or as externally-fixed sensor. The rc_visard’s intuitive calibration, configuration, and use enable 3D
vision for everyone.

Fig. 1.1: rc_visard 65 and rc_visard 160

The terms “sensor,” “rc_visard 65,” and “rc_visard 160” used throughout the manual all refer to the Roboception
rc_visard family of self-registering cameras. Installation and control for all sensors are exactly the same, and all
use the same mounting base.

Note: Unless specified, the information provided in this manual applies to both the rc_visard 65 and rc_visard
160 versions of the Roboception sensor.

Note: This manual uses the metric system and mostly uses the units meter and millimeter. Unless otherwise
specified, all dimensions in technical drawings are in millimeters.

1.1. Overview 2

1.2 Warranty

Any changes or modifications not expressly approved by Roboception could void the user’s warranty and guaran-
tee rights.

Warning: The rc_visard sensor utilizes complex hardware and software technology that may not always
function as intended. The purchaser must design its application to ensure that any failure or the rc_visard
sensor does not cause personal injury, property damage, or other losses.

Warning: Do not attempt to take apart, open, service, or modify the rc_visard. Doing so could present the
risk of electric shock or other hazard. Any evidence of any attempt to open and/or modify the device, including
any peeling, puncturing, or removal of any of the labels, will void the Limited Warranty.

Warning: CAUTION: to comply with the European CE requirement, all cables used to connect this device
must be shielded and grounded. Operation with incorrect cables may result in interference with other devices
or undesired effects of the product.

Note: This product may not be treated as household waste. By ensuring this product is disposed of correctly,
you will help to protect the environment. For more detailed information about the recycling of this product,
please contact your local authority, your household waste disposal service provider, or the product’s supplier.

1.2. Warranty 3

1.3 Applicable standards

1.3.1 Interfaces

The rc_visard supports the following interface standards:

The Generic Interface for Cameras standard is the basis for plug & play handling of cameras and devices.

GigE Vision® is an interface standard for transmitting high-speed video and related control data over Ethernet
networks.

1.3.2 Approvals

The rc_visard has received the following approvals:

EC Declaration of Conformity

certification by TÜV Süd

1.3.3 Standards

The rc_visard has been tested to be in compliance with the following standards:

• AS/NZS CISPR32 : 2015 Information technology equipment, Radio disturbance characteristics, Limits and
methods of measurement

• CISPR 32 : 2015 Electromagnetic compatibility of multimedia equipment - Emission requirements

• GB 9254 : 2008 This standard is out of the accreditation scope. Information technology equipment, Radio
disturbance characteristics, Limits and methods of measurement

• EN 55032 : 2015 Electromagnetic compatibility of multimedia equipment - Emission requirements

• EN 55024 : 2010 +A1:2015 Information technology equipment, Immunity characteristics, Limits and meth-
ods of measurement

• CISPR 24 : 2015 +A1:2015 International special committee on radio interference, Information technology
equipment-Immunity characteristics-Limits and methods of measurement

• EN 61000-6-2 : 2005 Electromagnetic compatibility (EMC) Part 6-2:Generic standards - Immunity for
industrial environments

• EN 61000-6-3 : 2007+A1:2011 Electromagnetic compatibility (EMC) - Part 6-3: Generic standards - Emis-
sion standard for residential, commercial and light-industrial environments

1.3. Applicable standards 4

http://www.genicam.org/
http://www.gigevision.com

1.4 Glossary

DHCP The Dynamic Host Configuration Protocol (DHCP) is used to automatically assign an IP address to a
network device. Some DHCP servers only accept known devices. In this case, an administrator needs to
configure the DHCP server with the fixed MAC address of a device.

DNS

mDNS The Domain Name Server (DNS) manages the host names and IP addresses of all network devices. It is
responsible for resolving the host name into the IP address for communication with a device. A DNS can
be configured to get this information automatically when a device appears on a network or manually by an
administrator. In contrast, multicast DNS (mDNS) works without a central server by querying all devices
on a local network each time a host name needs to be resolved. mDNS is available by default on Linux and
Mac operating systems and is used when ‘.local’ is appended to a host name.

GenICam GenICam is a generic standard interface for cameras. It serves as a unified interface around other
standards such as GigE Vision, Camera Link, USB, etc. See http://genicam.org for more information.

GigE Gigabit Ethernet (GigE) is a networking technology for transmitting data at one gigabit per second.

GigE Vision GigE Vision® is a standard for configuring cameras and transmitting images over a GigE network
link. See http://gigevision.com for more information.

IMU An Inertial Measurement Unit (IMU) consists of three accelerometers and three gyroscopes that measure
the linear accelerations and the turn rates in all three dimensions.

INS An Inertial Navigation System (INS) is a 3D measurement system which uses inertial measurements (ac-
celerations and turn rates) to compute position and orientation information. We refer to our combination of
stereo vision and inertial navigation as stereo INS.

IP

IP address The Internet Protocol (IP) is a standard for sending data between devices in a computer network.
Every device requires an IP address, which must be unique in the network. The IP address can be configured
by DHCP, Link Local, or manually.

Link Local Link Local is a technology where network devices associate themselves with an IP address and check
if it is unique in the local network. Link Local can be used if DHCP is unavailable and manual IP configu-
ration is not or cannot be done. Link Local is especially useful for connecting a network device directly to a
host computer. By default, Windows 10 reverts automatically to Link Local if DHCP is unavailable. Under
Linux, Link Local must be enabled manually in the network manager.

MAC address The Media Access Control (MAC) address is a unique, persistent address for networking devices.
It is also known as the hardware address of a device. In contrast to the IP address, the MAC address is
(normally) permanently given to a device and does not change.

NTP The Network Time Protocol (NTP) is a TCP/IP protocol for synchronizing time over a network. Basically
a client requests the current time from a server, and uses it to set its own clock.

PTP The Precision Time Protocol (PTP, also known as IEEE1588) is a protocol which enables more precise and
robust clock synchronization than with NTP.

SDK A Software Development Kit (SDK) is a collection of software development tools or a collection of software
modules.

SGM SGM stands for Semi-Global Matching and is a state-of-the-art stereo matching algorithm which offers
brief run times and a great accuracy, especially at object borders, fine structures, and in weakly textured
areas.

SLAM SLAM stands for Simultaneous Localization and Mapping and describes the process of creating a map
of an unknown environment and simultaneously updating the sensor pose within the map.

UDP The User Datagram Protocol (UDP) is the minimal message-oriented transport layer of the Internet Proto-
col (IP) family. It uses a simple connectionless transmission model with a minimum of protocol mechanism
such as integrity verification (via checksum). The rc_visard uses UDP for publishing its estimated dynami-
cal states (Section 6.3.2) via the rc_dynamics interface (Section 8.3). To receive this data, applications may

1.4. Glossary 5

http://genicam.org
http://gigevision.com

use datagram sockets to bind to the endpoint of the data transmission consisting in a combination of an
IP address and a service port number such as 192.168.0.100:49500, which is typically referred to as a
destination of an rc_dynamics data stream in this documentation.

URI

URL A Uniform Resource Identifier (URI) is a string of characters identifying resources of the rc_visard’s
REST-API. An example of such a URI is /nodes/rc_stereocamera/parameters/fps, which points to
the fps run-time parameter of the stereo camera component.

A Uniform Resource Locator (URL) additionally specifies the full network location and protocol,
i.e., an exemplary URL to locate the above resource would be https://<rcvisard>/api/v1/nodes/
rc_stereocamera/parameters/fps where <rcvisard> refers to the rc_visard’s IP address.

XYZ+quaternion Format to represent a pose. See XYZ+quaternion format (Section 13.1.2) for its definition.

XYZABC format Format to represent a pose. See XYZABC format (Section 13.1.1) for its definition.

1.4. Glossary 6

2 Safety

Warning: The operator must have read and understood all of the instructions in this manual before handling
the rc_visard sensor.

Note: The term “operator” refers to anyone responsible for any of the following tasks performed in conjunction
with rc_visard:

• Installation
• Maintenance
• Inspection
• Calibration
• Programming
• Decommissioning

This manual explains the rc_visard’s various components and general operations regarding the product’s whole
life-cycle, from installation through operation to decommissioning.

The drawings and photos in this documentation are representative examples; differences may exist between them
and the delivered product.

2.1 General warnings

Note: Any use of the rc_visard in noncompliance with these warnings is inappropriate and may cause injury
or damage as well as void the warranty.

Warning:

• The rc_visard needs to be properly mounted before use.

• All cable sets need to be secured to the rc_visard and the mount.

• Cords must be at most 30 m long.

• An appropriate DC power source must supply power to the rc_visard.

• Each rc_visard must be connected to a separate power supply.

• The rc_visard’s housing must be grounded.

• The rc_visard’s and any related equipment’s safety guidelines must always be satisfied.

• The rc_visard does not fall under the purview of the machinery, low voltage, or medical directives.

7

Risk assessment and final application:

The rc_visard may be used on a robot. Robot, rc_visard, and any other equipment used in the final application
must be evaluated with a risk assessment. The system integrator’s duty is to ensure respect for all local safety
measures and regulations. Depending on the application, there may be risks that need additional protection/safety
measures.

2.2 Intended use

The rc_visard is intended for data acquisition (e.g., images, disparity images, and egomotion) in stationary and
mobile robotic applications. The rc_visard is intended for installation on a robot, automated machinery, mobile
platform, or stationary equipment. It can also be used for data acquisition in other applications.

Warning: The rc_visard is NOT intended for safety critical applications.

The GigE Vision® industry standard used by the rc_visard does not support authentication and encryption. All
data from and to the sensor is transmitted without authentication and encryption and could be monitored or ma-
nipulated by a third party. It is the operator’s responsibility to connect the rc_visard only to a secured internal
network.

Warning: The rc_visard must be connected to secured internal networks.

The rc_visard may be used only within the scope of its technical specification. Any other use of the sensor is
deemed unintended use. Roboception will not be liable for any damages resulting from any improper or unin-
tended use.

Warning: Always comply with local and/or national laws, regulations and directives on automation safety
and general machine safety.

2.2. Intended use 8

3 Hardware specification

Note: The following hardware specifications are provided here as a general reference; differences with the
product might exist.

3.1 Scope of delivery

Standard delivery for an rc_visard includes the rc_visard sensor and a quickstart guide only. The full manual is
available in digital form and is always installed on the sensor, accessible through the Web GUI (Section 4.5), and
available at http://www.roboception.com/documentation.

Note: The following items are not included in the delivery unless otherwise specified:
• Couplings, adapters, mounts
• Power supply unit, cabling, and fuses
• Network cabling

Please refer to Accessories (Section 10) for suggested third-party cable vendors.

A connectivity kit can be purchased for the rc_visard. It contains an M12 to RJ45 network cable, 24 V power
supply, and a DC plug to M12 power adapter. Please refer to Accessories (Section 10) for details.

Note: The connectivity kit is intended only for initial setup, not for permanent installation in industrial envi-
ronment.

The following picture shows the important parts of the rc_visard which are referenced later in the documentation.

Mounting interface Power
connector

Ethernet
connector

LED

Cooling fins

Left cameraRight camera

Fig. 3.1: Parts description

9

http://www.roboception.com/documentation

3.2 Technical specification

The common technical specifications for both rc_visard variants are given in Table 3.1.

Table 3.1: Common technical specifications for both rc_visard models
rc_visard 65 / rc_visard 160

Image resolution 1280 x 960 pixel, color or monochrome
Field of view Horizontal: 61°, Vertical: 48°
IR Cutoff 650 nm
Depth image

640 x 480 pixel (high) @ 3 Hz
320 x 240 pixel (medium) @ 15 Hz
214 x 160 pixel (low) @ 25 Hz

Egomotion 200 Hz, low latency
Computing unit Nvidia Tegra K1
Power supply 18 V to 30 V
Cooling Passive

The rc_visard 65 and rc_visard 160 differ in their baselines, which affects depth range and resolution as well as
the sensors’ size and weight.

Table 3.2: Differing technical specifications for the rc_visard variants
rc_visard 65 rc_visard 160

Baseline 65 mm 160 mm
Depth range 0.2 m to infinity 0.5 m to infinity
Depth resolution

0.5 mm @ 0.2 m
15 mm @ 1.0 m

1.5 mm @ 0.5 m
6 mm @ 1.0 m
23 mm @ 2.0 m
50 mm @ 3.0 m

Size (W x H x L) 135 mm x 75 mm x 96 mm 230 mm x 75 mm x 84 mm
Mass 0.68 kg 0.84 kg

The rc_visard can be equipped with on-board software modules such as SLAM for additional features. These
software modules can be ordered and require a license update.

3.2. Technical specification 10

135

75

65

32.5

37
.5

(96)
74.5

21.5

Fig. 3.2: Overall dimensions of the rc_visard 65

230

75
37
.5

80

160

62.5
21.5

(84)

Fig. 3.3: Overall dimensions of the rc_visard 160

3.2. Technical specification 11

CAD models of the rc_visard can be downloaded from http://www.roboception.com/download. The CAD models
are provided as-is, with no guarantee of correctness. When a material property of aluminium is assigned (density
of 2.76 g

cm3), the mass properties of the CAD model are within 5% of the product with respect to weight and center
of mass, and within 10% with respect to moment of inertia.

3.3 Environmental and operating conditions

The rc_visard is designed for industrial applications. Always respect the storage, transport, and operating envi-
ronmental conditions outlined in Table 3.3.

Table 3.3: Environmental conditions
rc_visard 65 / rc_visard 160

Storage/Transport temperature -25 °C to 70 °C
Operating temperature 0 °C to 50 °C
Relative humidity (non condensing) 20 % to 80 %
Vibration 5 g
Shock 50 g
Protection class IP54
Others

• Free from corrosive liquids or gases
• Free from explosive liquids or gases
• Free from powerful electromagnetic interference

The rc_visard is designed for an operating (surrounding environment) temperature of 0 °C to 50 °C and relies on
convective (passive) cooling. Unobstructed airflow, especially around the cooling fins, needs to be ensured during
use. The rc_visard should only be mounted using the provided mechanical mounting interface, and each part of
the housing must remain uncovered. A free space of at least 10 cm extending in all directions from the housing,
and sufficient air exchange with the environment is required to ensure adequate cooling. Cooling fins must be free
of dirt and other contamination.

The housing temperature depends on the processing load, sensor orientation, and surrounding environmental tem-
peratures. When the sensor’s exposed housing surfaces exceed 60°C, the LED at the front will turn from green to
red.

Warning: For hand-guided applications, a heat-insulated handle should be attached to the sensor to reduce
the risk of burn injuries due to skin exposure to surface temperatures exceeding 60°C.

3.4 Power-supply specifications

The rc_visard needs to be supplied by a DC voltage source. The rc_visard’s standard package doesn’t include a
DC power supply. The power supply contained in the connectivity kit may be used for initial setup. For permanent
installation, it is the customer’s responsibility to provide suitable DC power. The sensor is qualified as industrial
equipment Class A under EN55011. As such, each rc_visard must be connected to a separate power supply.
Connection to domestic grid power is only allowed through a power supply certified as EN55011 Class B.

Table 3.4: Absolute maximum ratings for power supply
Min Nominal Max

Supply voltage 18.0 V 24 V 30.0 V
Max power consumption 25 W
Overcurrent protection Supply must be fuse-protected to a maximum of 2 A
EMC compliance Industrial equipment under EN55011 Class A

3.3. Environmental and operating conditions 12

http://www.roboception.com/download

Warning: Exceeding maximum power rating values may lead to damage of the rc_visard, power supply, and
connected equipment.

Warning: A separate power supply must power each rc_visard.

Warning: Connection to domestic grid power is allowed through a power supply certified as EN55011 Class
B only.

3.5 Wiring

Cables are not provided with the rc_visard standard package. It is the customer’s responsibility to obtain the
proper cabling. Accessories (Section 10) provides an overview of suggested components.

Warning: Proper cable management is mandatory. Cabling must always be secured to the rc_visard mount
with a strain-relief clamp so that no forces due to cable movements are exerted on the rc_visard’s M12 connec-
tors. Enough slack needs to be provided to allow for full range of movement of the rc_visard without straining
the cable. The cable’s minimum bend radius needs to be observed.

The rc_visard provides an industrial 8-pin A-coded M12 socket connector for Ethernet connectivity and an 8-pin
A-coded M12 plug connector for power and GPIO connectivity. Both connectors are located at the back. Their
locations (distance from centerlines) are identical for the rc_visard 65 and rc_visard 160. The location of both
connectors on the rc_visard 65 is shown as an example in Fig. 3.4.

45.9

23
.4

23
.4

Ethernet
connector

Power
connector

Fig. 3.4: Locations of the electrical connections for the rc_visard 65, with Ethernet on top and power on the
bottom

Connectors are rotated so that standard 90° angled connectors will exit horizontally, away from the camera (away
from the cooling fins).

3.5. Wiring 13

1

2

3
45

6

7

8

Ethernet
M12 8-pin socket connector
A-coded, view onto camera

Power/GPIO
M12 8-pin plug connector
A-coded, view onto camera

1
2

3
45

6

7
8

Fig. 3.5: Pin positions for power and Ethernet connector

Pin assignments for the Ethernet connector are given in Fig. 3.6.

M12 RJ45

6
4
5
8
1
7
2
3

1 WH-OG
2 OG
3 WH-GN
6 GN
5 WH-BU
4 BU
7 WH-BN
8 BN

Fig. 3.6: Pin assignments for M12 to Ethernet cabling

Pin assignments for the power connector are given in Table 3.5.

Table 3.5: Pin assignments for the power connector
Pin Assignment
1 GPIO In 2
2 Power
3 GPIO In 1
4 GPIO Gnd
5 GPIO Vcc
6 GPIO Out 1 (image expo-

sure)
7 Gnd
8 GPIO Out 2

GPIOs are decoupled by photocoupler. GPIO Out 1 by default provides an exposure sync signal with a logic high
level for the duration of the image exposure. All GPIOs can be controlled via the optional IOControl component
(IO and Projector Control, Section 7.2). Pins of unsused GPIOs should be left floating.

Warning: It is especially important that during the boot phase GPIO In 1 is left floating or remains low. The
rc_visard will not boot if the pin is high during boot time.

3.5. Wiring 14

GPIO circuitry and specifications are shown in Fig. 3.7. The maximum rated voltage for GPIO In and GPIO Vcc
is 30 V.

2k

GPIO In:
 Uin_low = 0 VDC
 Uin_high = 11VDC to 30 VDC
 Iin = 5mA to 13 mA

GPIO Out:
 Uext = 5VDC to 30 VDC
 Iout = max 50 mA

2k

180

180

GPIO_GND

GPIO_In2

GPIO_In1

GPIO_Power_Vcc

GPIO_Out1

GPIO_Out2

Fig. 3.7: GPIO circuitry and specifications – do not connect signals higher than 30 V

Warning: Do not connect signals with voltages higher than 30 V to the rc_visard.

3.6 Mechanical interface

The rc_visard 65 and rc_visard 160 offer identical mounting-point setups at the bottom.

3.6. Mechanical interface 15

50

5
5

5
28

4+0.05

4+0.05

28

UNC 1/4"-20,
thread depth = 5

Optical axis

Z

X

3x M4 mounting threads
for dynamic applications

3xM4, thread

 depth = 6

Fig. 3.8: Mounting-point for connecting the rc_visard to robots or other mountings

For troubleshooting and static applications, the sensor may be mounted using the standardized tripod thread (UNC
1/4”-20) indicated at the coordinate-frame origin. For dynamic applications such as mounting on a robotic arm,
the sensor must be mounted with three M4 (metric standard) 8.8 machine screws tightened to 2.5 Nm and secured
with a medium-strength threadlocking adhesive such as Loctite 243. Maximum thread depth is 6 mm. The two
4 mm diameter holes may be used for positioning pins (ISO 2338 4 m6) to ensure precise repositioning of the
sensor.

Warning: For dynamic applications, the rc_visard must be mounted with three M4 8.8 machine screws
tightened to 2.5 Nm torque and secured with threadlocking adhesive. Do not use high-strength bolts. The
engaged thread depth must be at least 5 mm.

3.7 Coordinate frames

The rc_visard’s coordinate-frame origin is defined as the exit pupil of the left camera lens. This frame is called
sensor coordinate frame or camera coordinate frame. An approximate location for the rc_visard 65 is shown in
the next image.

The mounting-point frame for both rc_visard devices is defined to be at the bottom, centered in the tripod thread,
with orientation identical to that of the sensor’s coordinate frame. Fig. 3.9 shows approximate offsets.

3.7. Coordinate frames 16

135

75

65

21.5

(96)
74.5

28

37
.5

32.5
x

y

x

y

z

y

z

y

~31.5

Fig. 3.9: Approximate location of sensor/camera coordinate frame (inside left lens) and mounting-point frame (at
tripod thread) for the rc_visard 65

Approximate locations of sensor/camera coordinate frame and mounting-point frame for the rc_visard 160 are
shown in Fig. 3.10.

230

160

80

75
37
.5

21.5 28

62.5
(84)

~31.5

x

y

x

y

z

y

z

y

Fig. 3.10: Approximate locations of sensor/camera coordinate frame (inside left lens) and mounting-point frame
(at tripod thread) for the rc_visard 160

Note: The correct offset between the sensor/camera frame and a robot coordinate frame can be calibrated
through the hand-eye-calibration procedure (Section 6.7).

3.7. Coordinate frames 17

4 Installation

Warning: The instructions on Safety (Section 2) related to the rc_visard must be read and understood prior
to installation.

4.1 Installation and configuration

The rc_visard offers a Gigabit Ethernet interface for connecting the device to a computer network. All communi-
cations to and from the device are performed via this interface. The rc_visard has an on-board computing resource
that requires booting time after powering up the device.

4.2 Power up

Note: Always fully connect and tighten the M12 power connector on the rc_visard before turning on the power
supply.

After connecting the rc_visard to the power, the LED on the front of the device should immediately illuminate.
During the device’s boot process, the LED will change color and will eventually turn green. This signals that all
processes are up and running.

If the network is not plugged in or the network is not properly configured, then the LED will flash red every 5
seconds. In this case, the device’s network configuration should be verified. See LED colors (Section 11.1) for
more information on the LED color codes.

4.3 Network configuration

The rc_visard requires an Internet Protocol (IP) address for communication with other network devices. The IP
address must be unique in the local network, and can be set automatically or manually.

Host name

MAC address

Fig. 4.1: Label on the rc_visard

18

4.3.1 Automatic configuration (factory default)

The Dynamic Host Configuration Protocol (DHCP) is preferred for setting an IP address. If DHCP is active on
the rc_visard, which is the factory default, then the device tries to contact a DHCP server at startup and every time
the network cable is plugged in. If a DHCP server is available on the network, then the IP address is automatically
configured.

In some networks, the DHCP server is configured so that it only accepts known devices. In this case, the Media
Access Control address (MAC address), which is printed on the sensor label, needs to be configured in the DHCP
server. At the same time, the sensor’s host name can also be set in the Domain Name Server (DNS). The host
name is defined as rc-visard-<serial number>, which is also printed on the sensor. Both MAC address and
host name should be sent to the network administrator for configuration.

If the rc_visard cannot contact a DHCP server for about 15 seconds after startup or after plugging in the network
cable, it will try to assign itself a unique IP address. This process is called Link Local. This option is especially
useful for connecting the rc_visard directly to a computer. The computer must be configured for Link Local as
well. Link Local might already be configured as a standard fallback option, as it is under Windows 10. Other
operating systems such as Linux require Link Local to be explicitly configured in their network managers.

4.3.2 Manual configuration

Specifying a persistent IP address manually might be useful in come cases. This is done via the sensor’s standard
GigE Vision® 2.0 interface, and requires a configuration tool to be installed on the host computer. We recommend
using the IpConfigTool that is part of the Baumer GAPI SDK. The SDK can be downloaded free of charge for
Windows and Linux from http://www.baumer.com.

After the configuration tool starts, it scans for all available GigE Vision® sensors on the network. All rc_visard
devices can be uniquely identified by their serial number and MAC address, which are both printed on the device.
If the device cannot be found, it can also be connected directly to the computer for configuration (see Automatic
configuration (factory default), Section 4.3.1).

Warning: The IP address must be unique and within the local network’s range of valid addresses. Further-
more, the subnet mask must match the local network; otherwise, the rc_visard may become inaccessible. This
can be avoided by using automatic configuration as explained in Automatic configuration (factory default)
(Section 4.3.1).

4.4 Discovery of rc_visard devices

Devices that are powered up and connected to the local network or directly to a computer (see Network configu-
ration, Section 4.3) can be found using the standard GigE Vision® discovery mechanism. Roboception offers the
open-source tool rcdiscover-gui, which can be downloaded free of charge from http://www.roboception.com/
download for Windows and Linux. The tool’s Windows version consists of a single executable for Windows 7 and
Windows 10, which can be executed without installation. For Linux an installation package is available for Ubuntu
14.04 and 16.04. At startup, all available rc_visard devices are listed with their names, serial numbers, current
IP addresses, and unique MAC addresses. The discovery tool finds all devices reachable by global broadcasts.
Misconfigured devices that are located in different subnets than the computer may also be listed. An icon in the
discovery tool indicates whether devices are actually reachable via a web browser.

4.4. Discovery of rc_visard devices 19

http://www.baumer.com/de-en/products/identification-image-processing/software/baumer-gapi-sdk/
http://www.baumer.com
http://www.roboception.com/download
http://www.roboception.com/download

Fig. 4.2: rcdiscover-gui tool for finding connected rc_visard devices

After successful discovery, a double click on the device row opens the Web GUI (Section 4.5) of the device in the
operating system’s default web browser. Mozilla Firefox is recommended as web browser.

4.4.1 Resetting configuration

A misconfigured device can be reset by using the Reset rc_visard button in the discovery tool. The reset mech-
anism is only available for two minutes after device startup. Thus, the rc_visard may require rebooting before
being able to reset the device.

Fig. 4.3: Reset dialog of the rcdiscover-gui tool

If the discovery tool still successfully detects the the misconfigured rc_visard, then the latter can be selected from
the rc-visard drop-down menu. Otherwise, the rc_visard’s MAC address, which is printed on the device label, can
be entered manually into the designated fields.

One of four options can be chosen after entering the MAC address:

• Reset Parameters: Reset all rc_visard parameters, such as frame rate, that are configurable via Web GUI
(Section 4.5).

• Reset Network: Reset network settings and user-defined name.

• Reset All: Reset the rc_visard parameters as well as network settings and user-defined name.

• Switch Partitions: Allows a rollback to be performed as described in Restoring the previous firmware ver-
sion (Section 9.4).

A white status LED followed by a device reboot indicates a successful reset. If no reaction is noticeable, the two
minutes time slot may have elapsed, requiring another reboot.

Note: The reset mechanism is only available for the first two minutes after startup.

4.4. Discovery of rc_visard devices 20

4.5 Web GUI

The rc_visard’s Web GUI can be used to test, calibrate, and configure on-board processing. It can be accessed
from any web browser, such as Firefox, Google Chrome, or Microsoft Edge, via the sensor’s IP address. The
easiest way to access the Web GUI is to simply double click on the desired device using the rcdiscover-gui
tool as explained in Discovery of rc_visard devices (Section 4.4).

Alternatively, some network environments automatically configure the unique host name of the rc_visard in their
Domain Name Server (DNS). In this case, the Web GUI can also be accessed directly using the URL http:/
/rc-visard-<serial-number> by replacing <serial-number> with the serial number printed on the device
label.

For Linux and Mac operating systems, this even works without DNS via the multicast Domain Name System
(mDNS), which is automatically used if .local is appended to the host name. Thus, the URL simply becomes
http://rc-visard-<serial-number>.local.

The Web GUI’s overview page gives the most important information about on-board processing.

Fig. 4.4: Overview page of the rc_visard’s Web GUI

The page’s top row permits access to the individual rc_visard modules.

• The Camera module shows a live stream of the device’s left and right rectified images. The frame rate can
be reduced to save bandwidth when streaming to a GigE Vision® client. Furthermore, exposure can be set
manually or automatically. See Parameters (Section 6.1.3) for more information.

• The Depth Image module shows a live stream of the left rectified, depth, and confidence images. The page
contains various settings for depth-image computation and filtering. See Parameters (Section 6.2.4) for

4.5. Web GUI 21

more information.

• The Dynamics module shows the location and movement of image features that are used to compute the
rc_visard’s egomotion. Settings include the number of corners and features that should be used. See Pa-
rameters (Section 6.4.1) for more information.

• The Camera Calibration module permits the camera to be checked for proper calibration. In rare cases
when the camera is no longer sufficiently calibrated, calibration also can be performed using this module.
See Camera calibration (Section 6.6) for more information.

• The Hand-Eye-Calibration module allows the computation of the static transformation between the
rc_visard and a coordinate system known in the robot system. This can be the flange coordinate system
of a robotic arm if the rc_visard is attached to the flange. Alternatively, the rc_visard may be mounted
statically in the robot environment and calibrated to any other static frame known in the robot system. See
Hand-eye calibration (Section 6.7) for more information.

• The Logs module permits access to the log files on the rc_visard. The log files are typically checked if errors
are suspected.

• The System module permits the firmware or the license file to be updated and provides some general infor-
mation about the device.

Changed parameters are not persistent and will be lost when restarting the rc_visard unless they are saved by
pressing the Save button before leaving the corresponding page.

Further information on all parameters in the Web GUI can be obtained by pressing the Info button next to each
parameter.

4.5. Web GUI 22

5 The rc_visard in a nutshell

The rc_visard is a self-registering 3D camera. It provides rectified camera, disparity, confidence, and error images,
which enable the viewed scene’s depth values along with their uncertainties to be computed. Furthermore, the
motion of visual features in the images is combined with acceleration and turn-rate measurements at a high rate,
which enables the sensor to provide real-time estimates of its current pose, velocity, and acceleration.

5.1 Stereo vision

The rc_visard is based on stereo vision using the SGM (Semi-Global Matching) method. In stereo vision, 3D
information about a scene can be extracted by comparing two images taken from different viewpoints. The main
idea behind using a camera pair for measuring depth is the fact that object points appear at different positions in
the two camera images depending on their distance from the camera pair. Very distant object points appear at
approximately the same position in both images, whereas very close object points occupy different positions in
the left and right camera image. The object points’ displacement in the two images is called disparity. The larger
the disparity, the closer the object is to the camera. The principle is illustrated in Fig. 5.1.

Image plane

Left camera Right camera

Left image

Right image

d1 d2

Fig. 5.1: Sketch of the stereo-vision principle: The more distant object (black) exhibits a smaller disparity 𝑑2 than
that of the close object (gray), 𝑑1.

Stereo vision is a form of passive sensing, meaning that it emits neither light nor other signals to measure distances,
but uses only light that the environment emits or reflects. The rc_visard can thus work indoors and outdoors and
multiple rc_visard devices can work together without interferences.

To compute the 3D information, the stereo matching algorithm must be able to find corresponding object points
in the left and right camera images. For this, the algorithm requires texture, meaning changes in image inten-
sity values due to patterns or the objects’ surface structure, in the images. Stereo matching is not possible for
completely untextured regions, such as a flat white wall without any visible surface structure. The SGM stereo
matching method used provides the best trade-off between runtime and accuracy, even for fine structures.

23

For stereo matching, the position and orientation of the left and right cameras relative to each other has to be
known with very high accuracy. This is achieved by calibration. The rc_visard’s cameras are pre-calibrated
during production. However, if the rc_visard has been decalibrated, during transport for example, then the user
has to recalibrate the stereo camera.

The following rc_visard software components are required to compute 3D information:

• Stereo camera: This component is responsible for capturing synchronized stereo image pairs and transform-
ing them into images approaching those taken by an ideal stereo camera (rectification) (Section 6.1).

• Stereo matching: This component computes disparities for the rectified stereo camera pair using
SGM (Section 6.2).

• Camera calibration: This component enables the user to recalibrate the rc_visard’s stereo camera (Section
6.6).

5.2 Sensor dynamics

In addition to providing 3D information about the scene, the rc_visard can also estimate its egomotion or dy-
namic state in real time. This comprises its current pose, i.e., its position and orientation relative to a reference
coordinate system or reference frame, as well as its velocity and acceleration. Measurements from stereo visual
odometry (SVO) and the integrated Inertial Measurement Unit (IMU) are fused to compute this information. This
combination is called a Visual Inertial Navigation System (VINS).

Visual odometry observes the motion of characteristic points in the camera images to estimate the camera motion.
Object points are projected on different pixels in the camera image depending on the camera’s viewing position.
Each point’s 3D coordinates can also be computed using stereo matching between the point positions in the left
and right camera images. Thus, for two different viewing positions A and B, two sets of corresponding 3D points
are computed. Assuming a static environment, the motion that transforms one set of points into the other is the
camera’s motion. The principle is illustrated for a simplified 2D case in Fig. 5.2.

View A

View B

Pose A
Pose B

Observed motion

3D positions
view A

3D positions
view B

Computed camera
motion

Fig. 5.2: Simplified sketch of the stereo visual odometry principle for 2D motions: Camera motion is computed
from the observed motion of characteristic image points.

Since visual odometry relies on image-data quality, motion estimates deteriorate when the images are blurred or
are poorly illuminated. Furthermore, visual odometry’s frame rate is too low for control applications. That’s
why the rc_visard has an integrated Inertial Measurement Unit (IMU), which measures the accelerations and
angular velocities that occur when the rc_visard moves. It also measures acceleration due to gravity, which

5.2. Sensor dynamics 24

gives global orientation in the vertical direction. Further, IMU measurements have a high rate of 200 Hz. The
rc_visard’s linear velocity, position, and orientation can be computed by integrating the IMU measurements.
However, the integration results suffer from increasing drift over time. The rc_visard thus fuses accurate, but
low-frequency and sometimes volatile visual odometry measurements with reliable high-rate IMU measurements
to provide an accurate, robust, high-frequency estimate of the rc_visard’s current position, orientation, velocity,
and acceleration, which can be used in a control loop.

In addition to the stereo camera component and the calibration component, pose-estimate computations require
the following rc_visard software components:

• Sensor dynamics: This component handles starting, stopping, and streaming of the estimates for the indi-
vidual components (Section 6.3).

– Visual odometry: This component computes a motion estimate from the camera images (Section 6.4).

– Stereo INS: This component fuses the motion estimates from visual odometry with the measurements
from the integrated IMU to provide real-time pose estimates at a high frequency (Section 6.5).

– SLAM: This component is optionally available for the rc_visard and creates an internal map of the
environment, which is used to correct pose errors (Section 7.1).

5.3 Calibration relative to a robot

The rc_visard is designed for industrial environments including those featuring robotic applications in which the
rc_visard is either mounted on a robot or statically in a robot work cell. To use the rc_visard’s output, the robot
must know where the sensor is located in the robot coordinate frame. To compute the rc_visard’s location in the
robot coordinate frame, the sensor offers the so-called Hand-eye calibration software component (Section 6.7).
The calibration routine can be executed either programmatically via the REST-API interface or manually via the
Web GUI (Section 4.5).

5.3. Calibration relative to a robot 25

6 Software components

The rc_visard comes with several on-board software components, which provide camera images, 3D information,
and dynamics state estimates, and allow calibration to be performed. Each software component corresponds to a
node in the REST-API interface (Section 8.2). Fig. 6.1 gives an overview of the relationships between the different
software components and the data they provide via rc_visard’s various interfaces (Section 8).

Stereo Camera
rc_stereocamera

Stereo Camera
rc_stereocamera

Stereo Matching
rc_stereomatching

Stereo Matching
rc_stereomatching

Camera Calibration
rc_cameracalib

Camera Calibration
rc_cameracalib

Hand-Eye Calibration
rc_hand_eye_calibration

Hand-Eye Calibration
rc_hand_eye_calibration

Disparity image,
Confidence image,
Error image

Covered trajectory

Dynamic states
(INS only)

Left image,
Right image

Calibration transformation
between rc_visard and
robot

Left image,
Right image

 Sensor Dynamics
 rc_dynamics

 Sensor Dynamics
 rc_dynamics

 Visual Odometry
rc_stereovisodo

 Visual Odometry
rc_stereovisodo

Stereo INS
rc_stereo_ins

Stereo INS
rc_stereo_ins

SLAM (optional)
rc_slam

SLAM (optional)
rc_slam

Dynamic states
(best-effort, i.e.,
inc. SLAM if avail.)

G
ig

E
 /

G
e

n
IC

a
m

R
E

S
T-

A
P

I
rc

_
d

y
n

a
m

ic
s

in
te

rf
a

c
e

R
E

S
T-

A
P

I

Fig. 6.1: Flowchart of the software components with their node names and the most important outputs

Note: Components marked as optional extend the rc_visard’s features. Customers can extend the license to
purchase additional components.

The rc_visard’s on-board software consists of the following components:

• Stereo camera (rc_stereocamera, Section 6.1) acquires stereo image pairs and performs planar rectifi-
cation for using the stereo camera as a measurement device. Images are provided both for further
internal processing by other components and for external use as GenICam image streams.

• Stereo matching (rc_stereomatching, Section 6.2) uses the rectified stereo image pair to compute 3D
depth information such as disparity, error, and confidence images. These are provided as GenICam
streams, too.

• Sensor dynamics (rc_dynamics, Section 6.3.) provides estimates of rc_visard’s dynamic state such as its
pose, velocity, and acceleration. These states are transmitted as continuous data streams via the
rc_dynamics interface. For this purpose, the dynamics component manages and fuses data from the
following individual subcomponents:

26

– Visual odometry (rc_stereovisodo, Section 6.4) estimates the motion of the rc_visard device
based on the motion of characteristic visual features in the left camera images.

– Stereo INS (rc_stereo_ins, Section 6.5) combines visual odometry measurements with read-
ings from the on-board Inertial Measurement Unit (IMU) to provide accurate and high-
frequency state estimates in real time.

• Camera calibration (rc_cameracalib, Section 6.6) automatically checks and performs the self-
calibration of the rc_visard’s stereo camera in case it has been decalibrated. It furthermore enables
the user to check and perform recalibration manually via the WEB GUI (Section 4.5).

• Hand-eye calibration (rc_hand_eye_calibration, Section 6.7) enables the user to calibrate the
rc_visard with respect to a robot, either via the Web GUI or the REST-API.

6.1 Stereo camera

The stereo camera component contains functionality for acquiring stereo image pairs and performing planar recti-
fication needed to use the stereo camera as a measurement device.

6.1.1 Image acquisition

Acquiring stereo image pairs is the first step toward stereo vision. Since both cameras are equipped with global
shutters and their chips are hardware-synchronized, all pixels of both camera images are always exposed at the
exactly same time. GPIO out 1 (Section 3.5) signals the respective exposure time. Additionally, the time in the
middle of the image exposure is attached to the images as a timestamp. This timestamp becomes important for
dynamic applications in which the rc_visard or the scene moves.

Exposure time can be set manually to a fixed value. This is useful in an environment where lighting is controlled
so that it is always at the same intensity. The camera is set to auto exposure by default. In this mode, the rc_visard
chooses the exposure time automatically, up to a user defined maximum. The permitted maximum is meant to
limit the motion blur that occurs when taking images while the rc_visard or the scene is moving. The maximum
exposure time thus depends on the application. If the maximum exposure time is reached, the auto-exposure
algorithm uses the gain to increase image brightness. However, larger gain factors also amplify image noise.
Thus, the maximum exposure time trades motion blur off against image noise under weak-light conditions.

6.1.2 Planar rectification

Camera parameters such as focal length, lens distortion, and the relationship of the cameras to each other must be
exactly known to use the stereo camera as a measuring instrument. The parameters are determined by calibration
(see Camera calibration, Section 6.6). The rc_visard is already calibrated at production time and normally requires
no recalibration. The camera parameters describe with great precision all of the stereo-camera system’s geometric
properties, but the resulting model is complex and difficult to use.

Rectification is the process of remapping the images according to an ideal stereo-camera model. Lens distortion
is removed and the images are aligned so that an object point is always projected onto the same image row in
both images. The cameras’ optical axes become exactly parallel. This means that points at infinite distance are
projected onto the same image column in both images. The closer an object point is, the larger is the difference
between its image columns in the right and left images. This difference is called disparity.

Mathematically, the object point 𝑃 = (𝑃𝑥, 𝑃𝑦, 𝑃𝑧) is projected onto image point 𝑝𝑙 = (𝑝𝑙𝑥, 𝑝𝑙𝑦, 1) in the left
rectified image and onto 𝑝𝑟 = (𝑝𝑟𝑥, 𝑝𝑟𝑦, 1) in the right rectified image by

𝐴 =

⎛⎝ 𝑓 0 𝑤
2

0 𝑓 ℎ
2

0 0 1

⎞⎠ , 𝑇𝑠 =

⎛⎝ 𝑡
0
0

⎞⎠ ,

𝑠1𝑝𝑙 = 𝐴𝑃,

𝑠2𝑝𝑟 = 𝐴(𝑃 − 𝑇𝑠).

6.1. Stereo camera 27

The focal length 𝑓 is the distance between the common image plane and the optical centers of the left and right
cameras. It is measured in pixels. The baseline 𝑡 is the distance between the optical centers of the two cameras.
The image width 𝑤 and height ℎ are measured in pixels, too. 𝑠1 and 𝑠2 are scale factors ensuring that the third
coordinates of the image points 𝑝𝑙 and 𝑝𝑟 are equal to 1.

The rc_visard provides the time-stamped, rectified left and right images over the GenICam interface (see Chunk
data, Section 8.1.1). Live streams of the images are provided with reduced quality in the Web GUI (Section 4.5).

Note: The rc_visard reports a focal length factor via its various interfaces. It relates to the image width for
supporting different image resolutions. The focal length 𝑓 in pixels can be easily obtained by multiplying the
focal length factor by the image width in pixels.

6.1.3 Parameters

The stereo-camera software component is called rc_stereocamera and is represented by the Camera tab in the
Web GUI (Section 4.5). The user can change the camera parameters there, or directly via the REST-API (REST-
API interface, Section 8.2) or GigE Vision (GigE Vision 2.0/GenICam image interface, Section 8.1).

Note: Camera parameters cannot be changed via the Web GUI or REST-API if rc_visard is used via GigE
Vision.

Parameter overview

This component offers the following run-time parameters.

Table 6.1: The rc_stereocamera component’s run-time parameters
Name Type Min Max Default Description
exp_auto bool False True True Switching between auto and manual exposure
exp_height int32 0 959 0 Height of auto exposure region. 0 for whole

image.
exp_max float64 6.6e-05 0.018 0.007 Maximum exposure time in seconds if exp_auto

is true
exp_offset_x int32 0 1279 0 First column of auto exposure region
exp_offset_y int32 0 959 0 First row of auto exposure region
exp_value float64 6.6e-05 0.018 0.005 Manual exposure time in seconds if exp_auto is

false
exp_width int32 0 1279 0 Width of auto exposure region. 0 for whole

image.
fps float64 1.0 25.0 25.0 Frames per second in Hertz
gain_value float64 0.0 18.0 0.0 Manual gain value in decibel if exp_auto is false
wb_auto bool False True True Switching white balance on and off (only for

color camera)
wb_ratio_blue float64 0.125 8.0 2.4 Blue to green balance ratio if wb_auto is false

(only for color camera)
wb_ratio_red float64 0.125 8.0 1.2 Red to green balance ratio if wb_auto is false

(only for color camera)

This component reports the following status values.

6.1. Stereo camera 28

Table 6.2: The rc_stereocamera component’s status values
Name Description
baseline Stereo baseline 𝑡 in meters
color 0 for monochrome cameras, 1 for color cameras
exp Actual exposure time in seconds. This value is shown below the image preview in the Web

GUI as Exposure (ms).
focal Focal length factor normalized to an image width of 1
fps Actual frame rate of the camera images in Hertz. This value is shown in the Web GUI below

the image preview as FPS (Hz).
gain Actual gain factor in decibel. This value is shown in the Web GUI below the image preview as

Gain (dB).
height Height of the camera image in pixels
temp_left Temperature of the left camera sensor in degrees Celsius
temp_right Temperature of the right camera sensor in degrees Celsius
time Processing time for image grabbing in seconds
width Width of the camera image in pixels

Description of run-time parameters

Fig. 6.2: The Web GUI’s Camera tab

fps (FPS) This value is the cameras’ frame rate (fps, frames per second), which determines the upper frequency
at which depth images can be computed. This is also the frequency at which the rc_visard delivers images
via GigE Vision. Reducing this frequency also reduces the network bandwidth required to transmit the
images.

6.1. Stereo camera 29

The camera always runs with 25 Hz to ensure proper working of internal modules such as visual odometry
that need a constant frame rate. The user frame rate setting is implemented by excluding frames for stereo
matching and transmission via GigE Vision to reduce bandwidth as shown in figure Fig. 6.3.

Internal acquisition
Camera image

Fig. 6.3: Images are internally always captured with 25 Hz. The fps parameter determines how many of them are
sent as camera images via GigE Vision.

exp_auto (Exposure) This value can be set to 1 for auto-exposure mode, or to 0 for manual exposure mode. In
manual exposure mode, the chosen exposure time is kept, even if the images are overexposed or under-
exposed. In auto-exposure mode, the exposure time and gain factor is chosen automatically to correctly
expose the image. The last automatically determined exposure and gain values are set into exp_value and
gain_value when switching auto-exposure off.

exp_offset_x, exp_offset_y, exp_width, exp_height These values define a rectangular region in the left
rectified image for limiting the area used by auto exposure. The exposure time and gain factor of both
images are chosen to optimally expose the defined region. This can lead to over- or underexposure of image
parts outside the defined region. The region is visualized in the Web GUI by a rectangle in the left rectified
image. If either the width or height is 0, then the whole left and right images are considered by the auto
exposure function. This is the default.

exp_value (Manual) This value is the exposure time in manual exposure mode in seconds. This exposure time
is kept constant even if the images are underexposed. In the Web GUI, this exposure time can be entered in
milliseconds for convenience.

gain_value This value is the gain factor in decibel that can be set in manual exposure mode. Higher gain factors
reduce the required exposure time but introduce noise. The value can only be set through the REST-API
and GenICam, but not in the Web GUI.

exp_max (Auto) This value is the maximal exposure time in auto-exposure mode in seconds. In the Web GUI, this
exposure time can be conveniently entered in milliseconds. The actual exposure time is adjusted automati-
cally so that the images are exposed correctly. If the maximum exposure time is reached, but the images are
still underexposed, the rc_visard stepwise increases the gain to increase the images’ brightness. Limiting
the exposure time is useful for avoiding or reducing motion blur during fast movements. However, higher
gain introduces noise into the image. The best trade-off depends on the application.

wb_auto This value can be set to 1 for automatic white balancing or 0 for manually setting the ratio between
the colors using wb_ratio_red and wb_ratio_blue. The last automatically determined ratios are set into
wb_ratio_red and wb_ratio_blue when switching automatic white balancing off. White balancing is
without function for monochrome cameras. The value can only be set through the REST-API and GenICam,
but not in the Web GUI.

wb_ratio_red and wb_ratio_blue These values are used to set red to green and blue to green ratios for manual
white balance. White balancing is without function for monochrome cameras. The values can only be set
through the REST-API and GenICam, but not in the Web GUI.

These parameters are also available over the GenICam interface with slightly different names and partly with
different units or data types (see GigE Vision 2.0/GenICam image interface, Section 8.1).

6.1.4 Services

The stereo camera component offers the following services for persisting and restoring parameter settings.

save_parameters (Save) With this service call, the stereo camera component’s current parameter settings will
be made persistent to the rc_visard. That is, these values are applied even after reboot.

This service requires no arguments.

This service returns no response.

6.1. Stereo camera 30

reset_defaults (Reset) Restores and applies the default values for this component’s parameters (“factory re-
set”).

Warning: The user must be aware that by calling this service, the current parameter settings for the
camera component are irrecoverably lost.

This service requires no arguments.

This service returns no response.

6.2 Stereo matching

The stereo matching component uses the rectified stereo-image pair and computes disparity, error, and confidence
images.

6.2.1 Computing disparity images

After rectification, the left and right images have the nice property that an object point is projected onto the same
pixel row in both images. That point’s pixel column in the right image is always lower than or equal to the same
point’s pixel column in the left image. The term disparity signifies the difference between the pixel columns in
the right and left images and expresses the depth or distance of the object point from the rc_visard. The disparity
image stores the disparity values of all pixels in the left camera image.

The larger the disparity, the closer the object point. A disparity of 0 means that the projections of the object point
are in the same image column and the object point is at infinite distance. Often, there are pixels for which disparity
cannot be determined. This is the case for occlusions that appear on the left sides of objects, because these areas
are not seen from the right camera. Furthermore, disparity cannot be determined for textureless areas. Pixels for
which the disparity cannot be determined are marked as invalid with the special disparity value of 0. To distinguish
between invalid disparity measurements and disparity measurements of 0 for objects that are infinitely far away,
the disparity value for the latter is set to the smallest possible disparity value above 0.

To compute disparity values, the stereo matching algorithm has to find corresponding object points in the left and
right camera images. These are points that represent the same object point in the scene. For stereo matching,
the rc_visard uses SGM (Semi-Global Matching), which offers brief run times and a great accuracy, especially at
object borders, fine structures, and in weakly textured areas.

A key requirement for any stereo matching method is the presence of texture in the image, i.e., image-intensity
changes due to patterns or surface structure within the scene. In completely untextured regions such as a flat white
wall without any structure, disparity values can either not be computed or the results are erroneous or have low
confidence (see Confidence and error images, Section 6.2.3). The texture in the scene should not be an artificial,
repetitive pattern, since those structures may lead to ambiguities and hence to wrong disparity measurements.

If the rc_visard has to work in untextured environments, then a static artificial texture can be projected onto the
scene using an external pattern projector. This pattern should be random-like and not contain repetitive structures.

6.2.2 Computing depth images and point clouds

The following equations show how to compute an object point’s actual 3D coordinates 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 in the sensor
coordinate frame (Section 3.7) from the disparity image’s pixel coordinates 𝑝𝑥, 𝑝𝑦 and the disparity value 𝑑 in
pixels:

𝑃𝑥 =
𝑝𝑥 · 𝑡
𝑑

𝑃𝑦 =
𝑝𝑦 · 𝑡
𝑑

𝑃𝑧 =
𝑓 · 𝑡
𝑑

,

(6.1)

6.2. Stereo matching 31

where 𝑓 is the focal length after rectification in pixels and 𝑡 is the stereo baseline in meters, which was determined
during calibration. These values are also transferred over the GenICam interface (see Custom GenICam features
of the rc_visard, Section 8.1.1).

Note: The rc_visard reports a focal length factor via its various interfaces. It relates to the image width for
supporting different image resolutions. The focal length 𝑓 in pixels can be easily obtained by multiplying the
focal length factor by the image width in pixels.

Please note that equations (6.1) assume that the coordinate frame is centered in the middle of the image. The
following figure shows the definition of the image coordinate frame.

Fig. 6.4: The image coordinate frame’s origin is defined to be at the image’s center – 𝑤 is the image width and ℎ
is the image height.

The same equations, but with the corresponding GenICam parameters are given in Image stream conversions
:(Section 8.1.3).

The set of all object points computed from the disparity image gives the point cloud, which can be used for 3D
modeling applications. The disparity image is converted into a depth image by replacing the disparity value in
each pixel with the value of 𝑃𝑧 .

Note: Roboception provides software and examples for receiving disparity images from the rc_visard via GigE
Vision and computing depth images and point clouds. See http://www.roboception.com/download.

6.2.3 Confidence and error images

For each disparity image, the rc_visard provides an error image and a confidence image, which give uncertainty
measures for each disparity value. These images have the same resolution and the same frame rate as the disparity
image. The error image contains the disparity error 𝑑𝑒𝑝𝑠 in pixels corresponding to the disparity value at the same
image coordinates in the disparity image. The confidence image contains the corresponding confidence value 𝑐
between 0 and 1. The confidence is defined as the probability of the true disparity value being within the interval
of three times the error around the measured disparity 𝑑, i.e., [𝑑 − 3𝑑𝑒𝑝𝑠, 𝑑 + 3𝑑𝑒𝑝𝑠]. Thus, the disparity image
with error and confidence values can be used in applications requiring probabilistic inference. The confidence and
error values corresponding to an invalid disparity measurement will be 0.

The disparity error 𝑑𝑒𝑝𝑠 (in pixels) can be converted to a depth error 𝑧𝑒𝑝𝑠 (in meters) using the focal length 𝑓 (in
pixels), the baseline 𝑡 (in meters), and the disparity value 𝑑 (in pixels) of the same pixel in the disparity image:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑓 · 𝑡

𝑑2
. (6.2)

Combining equations (6.1) and (6.2) allows the depth error to be related to the depth:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑃𝑧

2

𝑓 · 𝑡
.

With the focal length and baselines of both rc_visard models and the typical disparity error 𝑑𝑒𝑝𝑠 of 0.5 pixels, the
depth error can be visualized as shown below.

6.2. Stereo matching 32

http://www.roboception.com/download

The rc_visard provides time-stamped disparity, error, and confidence images over the GenICam interface (see
Chunk data, Section 8.1.1). Live streams of the images are provided with reduced quality in the Web GUI (Section
4.5).

6.2.4 Parameters

The stereo matching component is called rc_stereomatching in the REST-API and it is represented by the Depth
Image tab in the Web GUI (Section 4.5). The user can change the stereo matching parameters there, or use the
REST-API (REST-API interface, Section 8.2) or GigE Vision (GigE Vision 2.0/GenICam image interface, Section
8.1).

Parameter overview

This component offers the following run-time parameters.

Table 6.3: The rc_stereomatching component’s run-time parameters
Name Type Min Max Default Description
disprange int32 32 512 256 Disparity range in pixels
fill int32 0 4 3 Disparity tolerance for hole filling in pixels
maxdepth float64 0.1 100.0 100.0 Maximum depth in meters
maxdeptherr float64 0.01 100.0 100.0 Maximum depth error in meters
median int32 1 5 1 Window size for median filtering in pixels
minconf float64 0.5 1.0 0.5 Minimum confidence
mindepth float64 0.1 100.0 0.1 Minimum depth in meters
quality string - - H S(taticHigh), H(igh), M(edium), or L(ow).
seg int32 0 4000 200 Minimum size of valid disparity segments in pixels

This component reports the following status values.

Table 6.4: The rc_stereomatching component’s status values
Name Description
fps Actual frame rate of the disparity, error, and confidence images. This value is

shown in the Web GUI below the image preview as FPS (Hz).
time_matching Time in seconds for performing stereo matching using SGM on the GPU
time_postprocessing Time in seconds for postprocessing the matching result on the CPU

Since SGM stereo matching and post processing run in parallel, the overall processing time for this component
is the maximum of time_matching and time_postprocessing. This time is shown in the Web GUI below the
image preview as Processing Time (s).

6.2. Stereo matching 33

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s Depth Image tab. The name in the Web GUI
is given in brackets behind the parameter name and the parameters are listed in the order they appear in the Web
GUI:

Fig. 6.5: The Web GUI’s Depth Image tab

quality (Quality) Disparity images can be computed in three different resolutions: high (640 x 480), medium
(320 x 240) and low (214 x 160). The lower the resolution, the higher the frame rate of the disparity
image. A 25 Hz frame rate can be achieved only at the lowest resolution. Additionally, static can be chosen,
which means high-resolution processing, limited to a maximal frame rate of 3 Hz and accumulation of

6.2. Stereo matching 34

all intermediate input images. The accumulation reduces noise, but is only suitable if the scene does not
change. Please note that the frame rate of the disparity, confidence, and error images will always be less
than or equal to the camera frame rate.

disprange (Disparity Range) The disparity range always start at 0 and goes up to the maximum disparity value
a pixel in the disparity image can have. Increasing the disparity range results in a smaller minimum distance
that can be measured, because larger disparity values mean smaller distances. The disparity range is given
in pixels and can be set to a value between 32 pixels and 512 pixels. Since a larger disparity range also
means a larger search area for the matching pixel in the right rectified image, the processing time increases
with a larger disparity range and the frame rate decreases. The disparity range’s value is related to the high-
resolution disparity image with 640 x 480 pixels and does not have to be scaled when a lower resolution is
chosen. Thus, the chosen disparity range gives the same minimum distance for every image-quality option.

fill (Fill-in) This option is used to fill holes in the disparity image by interpolating a plane. Only holes smaller
than the segmentation size (see below) are selected for interpolation. The fill-in value is the maximum
allowed disparity deviation of any of the hole’s border pixels from the interpolation plane. Only if all of
its border pixels deviate less than the fill-in value from the plane, a hole will be filled. Larger fill-in values
decrease the number of holes, but the interpolated values can have larger errors. The confidence for the
interpolated pixels is set to a low value of 0.5. Their error is set to the mean deviation of the hole border
pixels from the interpolation plane. A value of 0 effectively switches hole filling off.

seg (Segmentation) The segmentation parameter is used to set the minimum number of pixels that a connected
disparity region in the disparity image must fill. Isolated regions that are smaller are set to invalid in the
disparity image. This is useful for removing erroneous disparities. However, larger values may also remove
real objects.

median (Median) This value gives the window side length in pixels for the median filter, which smoothes the
disparity image. Larger values lead to oversmoothing and cost more processing time. A window size of 1
effectively turns this filter off.

minconf (Minimum Confidence) The minimum confidence can be set to filter potentially false disparity mea-
surements. All pixels with less confidence than the chosen value are set to invalid in the disparity image.

maxdeptherr (Maximum Depth Error) The maximum depth error is used to filter measurements that are too
inaccurate. All pixels with a larger depth error than the chosen value are set to invalid in the disparity
image. The maximum depth error is given in meters. The depth error generally grows quadratically with an
object’s distance from the sensor (see Confidence and error images, Section 6.2.3).

mindepth (Minimum Distance) The minimum distance is the smallest distance from the sensor at which mea-
surements should be possible. Larger values implicitly reduce the disparity range, which also reduces the
computation time. The minimum distance is given in meters.

maxdepth (Maximum Distance) The maximum distance is the largest distance from the sensor at which mea-
surements should be possible. Pixels with larger distance values are set to invalid in the disparity image.
Setting this value to its maximum permits values up to infinity. The maximum distance is given in meters.

The same parameters are also available over the GenICam interface with slightly different names and partly with
different data types (see GigE Vision 2.0/GenICam image interface, Section 8.1).

6.2.5 Services

The stereo matching component offers the following services for persisting and restoring parameter settings.

save_parameters (Save) With this service call, the stereo matching component’s current parameter settings are
persisted to the rc_visard. That is, these values are applied even after reboot.

This service requires no arguments.

This service returns no response.

reset_defaults (Reset) Restores and applies the default values for this component’s parameters (“factory re-
set”).

6.2. Stereo matching 35

Warning: The user must be aware that calling this service causes the current parameter settings for the
stereo matching component to be irrecoverably lost.

This service requires no arguments.

This service returns no response.

6.3 Sensor dynamics

The dynamics component provides estimates of the sensor state. These include pose, linear velocity, linear ac-
celeration, and rotational rates. The component handles starting and stopping, and streaming of the estimates for
individual subcomponents:

• Visual odometry (rc_stereovisodo) estimates the camera’s motion from the motion of characteristic im-
age points in the left camera images (Section 6.4).

• Stereo INS (rc_stereo_ins) combines visual odometry measurements with readings from an inertial
measurement unit (IMU) to provide accurate, high-frequency state estimates in real time (Section 6.5).

• SLAM (rc_slam) performs simultaneous localization and mapping (SLAM) for correcting accumulated
poses (Section 7.1).

6.3.1 Coordinate frames for state estimation

The world coordinate frame for state estimation is defined as follows: The coordinate frame’s z-axis points upward
and is aligned with the gravity vector. The x-axis is orthogonal to the z-axis and points in the rc_visard’s viewing
direction at the time when the pose estimation starts. The world frame’s origin is located at the origin of the
rc_visard’s IMU coordinate frame at the instant when state estimation is switched on.

If pose estimation is switched on when the rc_visard’s viewing direction parallels the gravity vector (with a
tolerance range of 10 degrees), then the world coordinate frame’s y-axis is aligned either with the IMU’s positive
or negative x-axis. In this orientation, the initial alignment of the world coordinate frame is no longer continuous.
Thus, special care has to be taken when pose estimation has to be started at such an orientation.

xIMU

yIMU
zIMU

zCam

xCam

y
Cam

xIMU

yIMU

zIMU

zCam

xCam

y
Cam

Pose at t=0

Current pose

zW

xW

yW

Fig. 6.6: Coordinate frames for state estimation. The IMU coordinate frame is inside the rc_visard’s housing. The
camera coordinate frame (Section 3.7) is in the focal point of the left camera.

6.3. Sensor dynamics 36

The transformation between the IMU coordinate frame and the camera/sensor frame is also estimated and provided
in the real-time dynamics stream over the rc_dynamics interface (see Interfaces, Section 8).

Warning: The stereo INS component self-calibrates the IMU during its initialization. It is therefore required
that the rc_visard is not moving and sufficient texture is visible during startup of the stereo INS component.

6.3.2 Available state estimates

The rc_visard provides seven different kinds of timestamped state-estimate data streams via the rc_dynamics
interface (see The rc_dynamics interface, Section 8.3):

Name Frequency Source Description
pose 25 Hz best effort Pose of camera frame, slightly delayed but most accurate
pose_ins 25 Hz Stereo INS Pose of camera frame, slightly delayed but most accurate
pose_rt 200 Hz best effort Pose of camera frame
pose_rt_ins 200 Hz Stereo INS Pose of camera frame
dynamics 200 Hz best effort Pose, velocity and acceleration in IMU frame
dynamics_ins 200 Hz Stereo INS Pose, velocity and acceleration in IMU frame
imu 200 Hz Stereo INS Raw IMU data

Best effort here means that if SLAM is running, then it contains the loop-closure corrected estimates and is equiv-
alent to the stream from Stereo INS when SLAM is not running.

Camera-pose streams (pose and pose_ins)

The camera-pose streams called pose and pose_ins are provided at 25 Hz with timestamps that correspond to
image timestamps. The former stream is the best-effort estimate, combining rc_slam and rc_stereo_ins if the
SLAM component is running. If SLAM is not running, then both data streams are equivalent. Pose values are
given in world coordinates, and also refer to the rc_visard’s camera frame origin (see Coordinate frames for state
estimation, Section 6.3.1). They are the most accurate estimates, taking all available rc_visard information into
consideration. They can be used in modeling applications, where camera images, depth images, or point clouds
have to be aligned highly accurately with each other. To ensure the greatest possible accuracy, these pose values
are delayed until a corresponding visual odometry measurement is available.

Real-time camera-pose streams (pose_rt and pose_rt_ins)

Two real-time pose streams called pose_rt and pose_rt_ins are provided at the IMU rate of 200 Hz. The
former stream is the best-effort estimate, combining rc_slam and rc_stereo_ins when the SLAM component
is running. If SLAM is not running, then both data streams are equivalent. They consist of the pose estimates of the
rc_visard’s camera frame origin (see Coordinate frames for state estimation, Section 6.3.1) in world coordinates.
The values given in these streams correspond to the values in the real-time dynamics streams, but give the pose of
the sensor/camera coordinate frame instead of that of the IMU coordinate frame.

Real-time dynamics streams (dynamics and dynamics_ins)

Two real-time dynamics streams called dynamics and dynamics_ins are provided at the IMU rate of 200 Hz. The
former stream is the best-effort estimate, combining rc_slam and rc_stereo_ins when the SLAM component
is running. If SLAM is not running, then both data streams are equivalent. The estimates can be used for real-
time control of a robot. Since the values are provided in real time and visual odometry computation requires some
processing time, the latest visual odometry estimate may not be included. Therefore, these estimates are in general
slightly less accurate than those in the non-real-time camera-pose streams (see above), but are the best estimates
available at this instant. The provided dynamics streams contain the rc_visard’s

• translation p = (𝑥, 𝑦, 𝑧)𝑇 in 𝑚,

6.3. Sensor dynamics 37

• rotation q = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧, 𝑞𝑤)
𝑇 as unit quaternion,

• linear velocities v = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)
𝑇 in 𝑚

𝑠 ,

• angular velocities 𝜔 = (𝜔𝑥, 𝜔𝑦, 𝜔𝑧)
𝑇 in 𝑟𝑎𝑑

𝑠 ,

• gravity-compensated linear accelerations a = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧)
𝑇 in 𝑚

𝑠2 , and

• transformation from camera to IMU coordinate frame as pose with frame name and parent frame name.

For each component, the stream also provides the name of the coordinate frame in which the values are given.
Translation, rotation, and linear velocities are given in the world frame; angular velocities and accelerations are
given in the IMU frame (see Coordinate frames for state estimation, Section 6.3.1). All values refer to the IMU
frame’s origin. That means, for example, that linear velocity is the velocity of the IMU frame’s origin in the world
frame.

Lastly, the stream contains a possible_jump flag, which is set to true whenever the optional SLAM component
(see SLAM, Section 7.1) corrects the state estimation after finding a loop closure. The state estimate can jump in
this case, which should be considered when the values are used in a control loop. If SLAM is not running, the
jump flag can be ignored and will stay false.

IMU data stream (imu)

The IMU data stream called imu is provided at the IMU rate of 200 Hz. It consists of the acceleration in x, y, z
directions plus the angular velocities around these three axis. The values are calibrated but not bias- and gravity-
compensated, and are given in the IMU frame. The transformation between IMU and sensor frame is provided in
the real-time dynamics stream.

6.3.3 Services

The sensor dynamics component offers the following services for starting dynamics/motion estimation. All ser-
vices return a numerical code of the entered state. The meaning of the returned state codes and names are given
in Table 6.5.

Table 6.5: Possible states of the sensor dynamics component
State name Description
IDLE The component is ready, but idle
WAITING_FOR_INS Waiting for stereo INS to start up
WAITING_FOR_INS_AND_SLAM Waiting for stereo INS and SLAM to start up
RUNNING The stereo INS component is running (SLAM is not running)
WAITING_FOR_SLAM Waiting for SLAM to start up (stereo INS is running)
RUNNING_WITH_SLAM Both stereo INS and SLAM are running
FATAL A fatal error has occured (either in stereo INS or SLAM)

start Starts the stereo INS component. Transitions from state IDLE through WAITING_FOR_INS to RUNNING.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

start_slam Starts the SLAM and – if not yet started – the stereo INS component. From state IDLE: Transi-
tions through WAITING_FOR_INS_AND_SLAM and WAITING_FOR_SLAM to RUNNING_WITH_SLAM. From state
RUNNING: Transitions through WAITING_FOR_SLAM to RUNNING_WITH_SLAM.

6.3. Sensor dynamics 38

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

stop Stops the stereo INS and – if running – the SLAM components. The trajectory estimate of the SLAM
component will still be available. Transitions from state RUNNING or RUNNING_WITH_SLAM to IDLE.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

stop_slam Stops the SLAM component. Stereo INS will continue to run. The trajectory estimate of the SLAM
component will still be available. Transitions from state RUNNING_WITH_SLAM to RUNNING.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

restart Restarts to stereo INS. Equivalent to successive stop and start.

From state RUNNING or RUNNING_WITH_SLAM: Transitions through states IDLE and WAITING_FOR_INS to
RUNNING.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

restart_slam Restarts to SLAM mode. Equivalent to successive stop and start_slam.

From state RUNNING or RUNNING_WITH_SLAM: Transitions through states IDLE,
WAITING_FOR_INS_AND_SLAM, WAITING_FOR_SLAM to RUNNING_WITH_SLAM.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

The following diagram shows the main states and transitions. Intermediate states and the fatal error state are
omitted for conceptual clarity.

6.3. Sensor dynamics 39

Fig. 6.7: Simplified state and transition diagram

These services shall respond quickly. Therefore, for services that cause a state transition the value of the returned
current_state in general is the first new (intermediate) state that was transitioned to, not the final state. E.g.,
for the start command the returned current_state will be WAITING_FOR_INS, not state RUNNING. If the
transition does not take place within 0.1 seconds, the current state is returned. See Table 6.5 for the meaning of
the returned state codes.

Note: The state FATAL can only be left by calling stop, which performs a transition to the state IDLE. The ser-
vices restart and restart_slam internally use stop and will also work as expected. start and start_slam
only work if the state is IDLE, and do nothing if the state is FATAL.

Note: The dynamics components can also be started and stopped on the Dynamics page of the Web GUI.

get_cam2imu_transform returns the transformation from camera to IMU coordinate frame. This is equivalent
to the cam2imu_transform in the Dynamics message (Section 8.3.3).

This service requires no arguments.

This service returns the following response:

{
"name": "string",
"parent": "string",
"pose": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

6.3. Sensor dynamics 40

6.4 Visual odometry

Visual odometry is part of the sensor dynamics component. It is used to estimate the camera’s motion from
the motion of characteristic image points (so-called image features) in left camera images. Image features are
computed from image corners, which are image regions with high intensity gradients. Image features are used
to look for matches between subsequent images to find correspondences. Their 3D coordinates are computed
by stereo matching (independent from the disparity image). The camera’s motion is computed from a set of
corresponding 3D points between two images. To increase the robustness of visual odometry, correspondences
are not only computed to the previous camera image but to a certain number of previous images, which are called
keyframes. The best result is then chosen.

The visual-odometry frame rate is independent of the user setting in the stereo camera component. It is internally
limited to 12 Hz but can be lower, depending on the number of features and keyframes. To ensure good pose-
estimation quality, the frame rate should not drop significantly under 10 Hz.

The visual odometry component’s measurements are not directly accessible on the rc_visard. Instead, they are
internally fused with measurements from the integrated inertial measurement unit to increase robustness and frame
rate and reduce latency. The result of the sensor data fusion is provided in the form of different streams (see Stereo
INS, Section 6.5).

6.4.1 Parameters

The visual odometry software component is called rc_stereovisodo and it is represented by the Dynamics tab
in the Web GUI (Section 4.5). The user can change the visual odometry parameters there, or use the REST-API
(REST-API interface, Section 8.2).

Parameter overview

This component offers the following run-time parameters.

Table 6.6: The rc_stereovisodo component’s run-time parameters
Name Type Min Max Default Description
disprange int32 32 512 256 Disparity range in pixels
ncorner int32 50 4000 500 Number of corners
nfeature int32 50 4000 300 Number of features
nkey int32 1 4 4 Number of keyframes

This component reports the following status values.

Table 6.7: The rc_stereovisodo component’s status values
Name Description
corner Number of detected corners. This value is shown as Corners below the image preview

in the Web GUI.
correspondences Number of correspondences. This value is shown as Correspondences below the image

preview in the Web GUI.
feature Number of features. This value is shown as Features below the image preview in the

Web GUI.
fps Frame rate of the visual odometry in Hertz. This value is shown below the image

preview as Visual Odometry FPS (Hz) in the Web GUI.
time_frame Processing time in seconds to compute corners and features for each frame
time_vo Processing time in seconds to compute the motion

6.4. Visual odometry 41

Description of run-time parameters

Run-time parameters influence the number of features used to compute visual odometry. More features increase
the visual odometry’s robustness at the expense of more run time, which can reduce the frame rate. Although the
resulting state estimate will always have a high frequency due to fusion with IMU measurements, high visual-
odometry frame rates are nevertheless desirable, since these measurements are much more accurate than IMU
measurements alone. A visual-odometry rate of at least 10 Hz should thus be aimed for. The visual-odometry
frame rate is provided as a status parameter and is shown below the camera image on the Web GUI’s Dynamics
page.

Fig. 6.8: The Web GUI’s Dynamics tab

The camera image shown on this page depicts image features as small green dots. The bold green dots are the
features in the current image for which correspondences could be found in a previous keyframe. Green lines
depict the motion of these features relative to the previous keyframe. This visualization should help to find a good
set of parameters for visual odometry. The number of correspondences is reported as a status parameter and is
shown below the camera image on the Web GUI’s Dynamics page. For robust visual-odometry measurements, the
parameters should be adjusted so that the resulting number of correspondences in the target environment is around
at least 50 when the sensor is moving. The correspondence count will be larger when the rc_visard is static, and
the number will change when the rc_visard moves through the environment. Short failures of the visual odometry
are tolerated due to the fusion with IMU measurements. Longer failures should be avoided because they lead to
large pose uncertainties and can lead to errors in the state estimation.

Each run-time parameter is represented by a row on the Web GUI’s Dynamics tab. The name of the row is given

6.4. Visual odometry 42

in brackets behind the parameter name, and the parameters are listed in the order they appear in the Web GUI:

start (Dynamics) This starts the sensor dynamics estimation components (see Services, Section 6.3.3).

disprange (Disparity Range) The disparity range gives the maximum disparity value for each image feature re-
lated to the resolution of the high-quality disparity image (640 x 480 pixels). The disparity range determines
the minimum working distance of the visual odometry. When the disparity range is narrow, only more dis-
tant features are considered in the visual-odometry estimation. When choosing a broader disparity range,
close features can also be used. Broader disparity ranges increase processing time, which can reduce the
visual odometry’s frame rate.

nkey (Number of Keyframes) More keyframes can increase the robustness and accuracy of the visual odometry,
but they also increase processing time and can decrease the visual-odometry frame rate.

ncorner (Number of Corners) This value gives the approximate number of corners that will be detected in the
left image. Larger numbers make visual odometry more robust and accurate but can lead to lower frame
rates of the visual odometry.

nfeature (Number of Features) This value is the maximum number of features that will be derived from the
corners. It is useful to detect more corners and select the best subset as features. Larger numbers make
visual odometry more robust and accurate but can lead to lower visual-odometry frame rates. Fewer features
might be computed, depending on the scene and movement. The actual number of features is reported below
the camera image on the Web GUI’s Dynamics page.

Note: Increasing the number of keyframes, corners, or features will also increase robustness but will require
more computation time and may reduce the frame rate, depending on other components active on the rc_visard.
The visual-odometry frame rate should be at least 10 Hz.

6.4.2 Services

The visual odometry component offers the following services for persisting and restoring parameter settings. The
names of the corresponding Web GUI buttons are added in brackets:

save_parameters (Save) With this service call, the current parameter settings of the visual odometry component
are persisted to the rc_visard. That is, these values are applied even after reboot.

This service requires no arguments.

This service returns no response.

reset_defaults (Reset) Restores and applies the default values for this component’s parameters (“factory re-
set”).

Warning: The user must be aware that calling this service causes irrecoverable loss of the visual
odometry component’s current parameter settings.

This service requires no arguments.

This service returns no response.

This component offers no start or stop services itself, because the dynamics component (Section 6.3) starts and
stops it.

6.5 Stereo INS

The stereo-vision-aided Inertial Navigation System (INS) component is part of the sensor dynamics component.
It combines visual-odometry measurements with inertial measurement unit (IMU) data and provides robust, low

6.5. Stereo INS 43

latency, real-time state estimates at a high rate. The IMU consists of three accelerometers and three gyroscopes,
which measure accelerations and turn rates in all three dimensions. By fusing IMU and visual-odometry measure-
ments, the state estimate has the same frequency as the IMU (200 Hz) and is very robust even under challenging
lighting conditions and for fast motions.

Note: To achieve high-quality pose estimates, it must be ensured that sufficient texture is visible during runtime
of the stereo INS component. In case no texture is visible for a longer period of time, the stereo INS component
will stop instead of providing highly erroneous data.

6.5.1 Self-Calibration

During startup of the stereo INS component, it will self-calibrate the IMU using the visual-odometry measure-
ments. For the self-calibration to succeed, it is required that

• the rc_visard is not moving and

• sufficient texture is visible

during startup of the stereo INS component. Failure to meet these requirements will most likely result in a constant
drift of the pose estimates.

6.5.2 Parameters

The stereo INS component’s node name is rc_stereo_ins.

This component has no run-time parameters.

This component reports the following status values.

Table 6.8: The rc_stereo_ins component’s status values
Name Description
freq Frequency of the stereo INS process in Hertz. This value is shown as Update Rate in the Web GUI

Overview tab in the Dynamics area
state String representing the internal state

6.6 Camera calibration

To use the stereo camera as measuring instrument, camera parameters such as focal length, lens distortion, and the
relationship of the cameras to each other must be exactly known. The parameters are determined by calibration
and used for image rectification (see Planar rectification, Section 6.1.2), which is the basis for all other image
processing modules. The rc_visard is calibrated at production time. Nevertheless, checking calibration and re-
calibration might be necessary if the rc_visard was exposed to strong mechanical impact. The camera calibration
component is responsible for checking calibration and recalibrating.

6.6.1 Self-calibration

The camera calibration component automatically runs in self-calibration mode at a low frequency in the back-
ground. In this mode, the rc_visard observes the alignment of image rows of both rectified images. A mechanical
impact, such as one caused by dropping the rc_visard, might result in a misalignment. If a significant mis-
alignment is detected, then it is automatically corrected. After each reboot and after each correction, the current
self-calibration offset is reported in the camera component’s log file (see Downloading log files, Section 9.7) as:

“rc_stereocalib: Current self-calibration offset is 0.00, update counter is 0”

6.6. Camera calibration 44

The update counter is incremented after each automatic correction. It is reset to 0 after manual recalibration of the
rc_visard.

Under normal conditions, such as the absence of mechanical impact on the rc_visard, self-calibration should
never occur. Self-calibration allows the rc_visard to work normally even after misalignment is detected, since
it is automatically corrected. Nevertheless, checking camera calibration manually is recommended if the update
counter is not 0.

6.6.2 Calibration process

Manual calibration can be done through the Web GUI’s Camera Calibration tab. This tab provides a wizard to
guide the user through the calibration process.

Note: Camera calibration is normally unnecessary since the rc_visard is calibrated at production time. There-
fore, calibration is only required after strong mechanical impacts, such as occur when dropping the rc_visard.

Step 1: Calibration settings

The quality of camera calibration heavily depends on the quality of the calibration grid. Calibration grids for the
rc_visard can be obtained from Roboception.

Fig. 6.9: Calibration settings

The Camera calibration component has to be selected in the Web GUI (Section 4.5) to verify or perform camera
calibration. In the first step, the width and height of the grid must be specified as shown in the screenshot above.
The Next button proceeds to the next step.

6.6. Camera calibration 45

Step 2: Verify calibration

In the second step, the current calibration can be verified. To perform the verification, the grid must be held such
that it is simultaneously visible in both cameras. Make sure that all black squares of the grid are completely
visible and not occluded. A green check mark overlays each correctly detected square. The correct detection of
the grid is only possible if all of the black squares are detected. After the grid is detected, the calibration error is
automatically computed, and the result is displayed on the screen.

Fig. 6.10: Verification of calibration

Some of the squares not being detected, or being detected only briefly might indicate a low-quality or damaged
calibration grid, or bad lighting conditions.

Note: To compute a meaningful calibration error, the grid should be held as closely as possible to the cameras.
If the grid only covers a small section of the camera images, the calibration error will always be less than when
the grid covers the full image.

The typical calibration error is around 0.3 pixels. If the error is less than 0.4 to 0.5 pixels, then the calibration
procedure can be skipped. If the calibration error is greater, the calibration procedure should be performed to
guarantee full sensor performance. The button Next starts the procedure.

6.6. Camera calibration 46

Warning: A large error during verification can be due to miscalibrated cameras, an inaccurate calibration
grid, or wrong grid width or height. Please make sure that the grid is accurate and the entered grid width and
height are correct. Otherwise, manual calibration will actually decalibrate the cameras!

Step 3: Performing calibration

The camera’s exposure time should be set appropriately before starting the calibration. To achieve good calibration
results, the images should be well-exposed and image noise should be avoided. Thus, the maximum auto-exposure
time should be great enough to achieve a very small gain factor, ideally 0.0 dB. The gain factor is displayed below
the camera images as shown in Fig. 6.11.

Fig. 6.11: Starting the calibration procedure

For calibration, the grid has to be held in certain poses. The arrows from the grid corners to the green areas
indicate that all grid corners should be placed inside the green areas. The green areas are called sensitive areas.
The Size of Sensitive Area slider can control their size to ease calibration as shown in the screen shot in Fig. 6.11.
However, please be aware that increasing their size too much may result in slightly less calibration accuracy.

Holding the grid upside down is a common mistake made during calibration. Spotting this in this case is easy
because the green lines from the grid corners into the green areas will cross each other as shown in Fig. 6.12.

6.6. Camera calibration 47

Fig. 6.12: Wrongly holding the grid upside down leads to crossed green lines.

Note: Calibration might appear cumbersome as it involves holding the grid in certain predefined poses. How-
ever, only this can ensure an unbiased, high-quality calibration result.

Monocalibration

Full calibration consists of calibrating each camera individually and then performing a stereo calibration to deter-
mine the relationship between them. In most cases, the intrinsic calibration of each camera does not get corrupted.
For this reason, Skip Monocalibration in the Calibrate tab should be clicked to skip monocalibration during the
first recalibration. Continue with the guidelines given in Stereo calibration. If stereo calibration yields an unsatis-
factory calibration error, then calibration should be repeated without skipping monocalibration.

The monocalibration process involves five poses for each camera as shown in Fig. 6.13.

Fig. 6.13: Poses required for monocamera calibration

After the corners or sides of the grid are placed on top of the sensitive areas, the process automatically shows the
next pose required. When the process is finished for the left camera, the same procedure is repeated for the right
one.

Stereo calibration

After monocalibration is completed or has been skipped, the stereo calibration process is started. During stereo
calibration, both cameras are calibrated to each other to find their relative rotation and translation.

First, the grid should be held closer than 40 cm from the sensor. It must be fully visible in both images and the
cameras should look perpendicularly onto the grid. A green outline that stays in the image indicates the images’
acceptance.

6.6. Camera calibration 48

Fig. 6.14: Holding the grid closer than 40 cm during stereo calibration

Next, the grid should be held at least 1 m from the cameras. The small cross in the middle of the images should be
inside of the grid and the cameras must look perpendicularly onto the grid. A green outline that stays in the image
indicates the images’ acceptance.

Fig. 6.15: Holding the grid farther away than 1 m during stereo calibration

Note: If the check marks on the calibration grid all vanish, then either the camera does not look perpendicularly
onto the grid, the green cross in the middle of the images is not inside the grid, or the grid is too far away from
the camera.

Step 4: Storing the calibration result

Clicking the Compute Calibration button finishes the process and displays the final result. The presented result is
the mean reprojection error of all calibration points. It is given in pixels and typically has a value around 0.3.

Note: The given result is the minimum error left after calibration. The real error is definitely not less than
this, but could in theory be larger. This is true for every camera-calibration algorithm and the reason why
we enforce holding the grid in very specific poses. Doing so ensures that the real calibration error cannot
significantly exceed the reported error.

Pressing Save Calibration applies the calibration and saves it to the sensor.

Warning: If a hand-eye calibration was stored on the rc_visard before camera calibration, the hand-eye
calibration values could have become invalid. Please repeat the hand-eye calibration procedure.

6.6.3 Parameters

The component is called rc_stereocalib in the REST-API.

Note: The camera calibration component’s available parameters and status values are for internal use only and
may change in the future without further notice. Calibration should only be performed through the Web GUI
as described above.

6.6. Camera calibration 49

6.6.4 Services

Note: The camera calibration component’s available service calls are for internal use only and may change
in the future without further notice. Calibration should only be performed through the Web GUI as described
above.

6.7 Hand-eye calibration

For applications, in which the rc_visard is integrated into one or more robot systems, it needs to be calibrated
w.r.t. some robot reference frames. For this purpose, the rc_visard is shipped with an on-board calibration routine
called the hand-eye calibration component.

Note: The implemented calibration routine is completely agnostic about the user-defined robot frame to which
the rc_visard is calibrated. It might be a robot’s end-effector (e.g., flange or tool center point) or any point on
the robot structure. The method’s only requirement is that the pose (i.e., translation and rotation) of this robot
frame w.r.t. a user-defined external reference frame (e.g., world or robot mounting point) is exactly observable
by the robot controller and can be reported to the calibration component.

The Calibration routine (Section 6.7.3) itself is an easy-to-use three-step procedure using a calibration grid.
Calibration grids for the rc_visard can be obtained from Roboception.

6.7.1 Calibration interfaces

The following two interfaces are offered to conduct hand-eye calibration:

1. All services and parameters of this component required to conduct the hand-eye calibration program-
matically are exposed by the rc_visard’s REST-API interface (Section 8.2). The respective node name
of this component is rc_hand_eye_calibration and the respective service calls are documented Ser-
vices (Section 6.7.5).

Note: The described approach requires a network connection between the rc_visard and the robot con-
troller to pass robot poses from the controller to the sensor’s calibration component.

2. For use cases where robot poses cannot be passed programmatically to the rc_visard’s hand-eye calibration
component, the Web GUI’s Hand-Eye Calibration tab (Section 4.5) offers a guided process to conduct the
calibration routine manually.

Note: During the process, the described approach requires the user to manually enter into the Web GUI
robot poses, which need to be accessed from the respective robot-teaching device or handheld.

6.7.2 Sensor mounting

As illustrated in Fig. 6.16 and Fig. 6.17, two different use cases w.r.t. to the mounting of the rc_visard generally
have to be considered:

1. The rc_visard is mounted on the robot, i.e., it is mechanically connected at its mounting points (Section
3.6) to a robot link (e.g., at its flange or a flange-mounted tool), and hence moves with the robot.

2. The rc_visard is not mounted on the robot but is fixed to a table or other place in the robot’s vicinity and
remains at a static position w.r.t. the robot.

While the general Calibration routine (Section 6.7.3) is very similar in both use cases, the calibration process’s
output, i.e., the resulting calibration transform, will be semantically different, and the fixture of the calibration
grid will also differ.

6.7. Hand-eye calibration 50

Calibration with a robot-mounted sensor When calibrating a robot-mounted rc_visard with the robot, the cal-
ibration grid has to be secured in a static position w.r.t. the robot, e.g., on a table or some other fixed-base
coordinate system as sketched in Fig. 6.16.

Warning: It is extremely important that the calibration grid does not move during step 2 of the Cal-
ibration routine (Section 6.7.3). Securely fixing its position to prevent unintended movements such as
those caused by vibrations, moving cables, or the like is therefore strongly recommended.

The result of the calibration (step 3 of the Calibration routine, Section 6.7.3) is a pose Trobot
camera describing

the (previoulsy unknown) relative positional and rotational transformation between the rc_visard’s camera
frame and the user-selected robot frame such that

probot = R
(︀
Trobot

camera

)︀
· pcamera + t

(︀
Trobot

camera

)︀
, (6.3)

where probot = (𝑥, 𝑦, 𝑧)𝑇 is a 3D-point with its coordinates expressed in the robot frame, pcamera is the same
point represented in the camera coordinate frame, and R(T) as well as t(T) are the corresponding 3 × 3
rotation matrix and 3× 1 translation vector to a pose T, respectively.

robot

ext

camera

T robot
ext

Tcamera
robot

Calibration grid

Fig. 6.16: Important frames and transformations for calibrating a robot-mounted rc_visard: The sensor is mounted
with a fixed relative position to a user-defined robot frame (e.g., flange or TCP). It is important that the pose Text

robot
of this robot frame w.r.t. a user-defined external reference frame ext is observable during the calibration routine.
The result of the calibration process is the desired calibration transformation Trobot

camera, i.e., the pose of the camera
frame within the user-defined robot frame.

Calibration with a statically-mounted sensor In use cases where the rc_visard is positioned statically w.r.t. the
robot, the calibration grid needs to be mounted to the robot as shown for example in Fig. 6.17 and Fig. 6.18.

Note: The hand-eye calibration component is completely agnostic about the exact mounting and posi-
tioning of the calibration grid w.r.t. the user-defined robot frame. That is, the relative positioning of the
calibration grid to that frame neither needs to be known, nor it is relevant for the calibration routine, as
shown in Fig. 6.18.

Warning: It is extremely important that the calibration grid is attached securely to the robot such that it
does not change its relative position w.r.t. the user-defined robot frame during step 2 of the Calibration
routine (Section 6.7.3).

Securely preventing unintended position changes such as those caused by vibrations, for example by
mounting the calibration grid itself on a wooden support (suggested thickness min. 1 cm), which can
then be screwed to the robot structure, e.g., its flange or tool, is therefore strongly recommended.

6.7. Hand-eye calibration 51

In this use case, the result of the calibration (step 3 of the Calibration routine, Section 6.7.3) is the pose
Text

camera describing the (previoulsy unknown) relative positional and rotational transformation between the
rc_visard’s camera frame and the user-selected external reference frame ext such that

pext = R
(︀
Text

camera

)︀
· pcamera + t

(︀
Text

camera

)︀
, (6.4)

where pext = (𝑥, 𝑦, 𝑧)𝑇 is a 3D point with its coordinates expressed in the external reference frame ext,
pcamera is the same point represented in the camera coordinate frame, and R(T) as well as t(T) are the
corresponding 3× 3 rotation matrix and 3× 1 translation vector to a pose T, respectively.

robot

ext

camera

T robot
ext Tcamera

ext

Calibration
grid

Fig. 6.17: Important frames and transformations for calibrating a statically mounted rc_visard: The sensor is
mounted with a fixed position relative to a user-defined external reference frame ext (e.g., the world coordinate
frame or the robot’s mounting point). It is important that the pose Text

robot of the user-defined robot frame w.r.t. this
frame is observable during the calibration routine. The result of the calibration process is the desired calibration
transformation Text

camera, i.e., the pose of the camera frame in the user-defined external reference frame ext.

robot

camera

robot

camera

Fig. 6.18: Alternate mounting options for attaching the calibration grid to the robot

6.7.3 Calibration routine

The general hand-eye calibration routine consists of three steps, which are illustrated in Fig. 6.19. These three
steps are also represented in the Web GUI’s guided hand-eye-calibration process (Section 4.5).

6.7. Hand-eye calibration 52

Set parameters
e.g., grid width, height.

1.

Move robot
to new calibration
position.

2a.

Calculate calibration
transformation.

3.

Send robot pose
to hand-eye calibration
component (filling slots).

2b.
repeat 3x or more

(x,y,z)
(qx,qy,qz,qw)

+

slot_0

(x,y,z)
(qx,qy,qz,qw)

+

slot_1

(x,y,z)
(qx,qy,qz,qw)

+

slot_2

Slots with robot poses and
corresponding camera images

(different views on
calibration grid)

Fig. 6.19: Illustration of the three different steps involved in the hand-eye calibration routine

Step 1: Setting parameters

Before starting the actual calibration routine, the grid size and sensor-mounting parameters have to be set to the
component. As for the REST-API, the respective parameters are listed in Parameters (Section 6.7.4).

Web GUI example: The Web GUI offers an interface for entering these parameters during the first step of the
calibration routine as shown in Fig. 6.20. In addition to grid size and sensor mounting, the Web GUI also
offers a Pose setting to be defined by the user. It specifies the format used for reporting the robot poses
in the upcoming step 2 of the calibration process, either as XYZABC for positions and Euler angles, or
XYZ+quaternion for positions plus quaternions for representing rotations. See Pose formats (Section 13.1)
for the exact definitions.

Note: The Pose parameter is added to the Web GUI as a convenience option only. For reporting poses
programmatically via REST-API, the XYZ+quaternion format is mandatory.

6.7. Hand-eye calibration 53

Fig. 6.20: Defining hand-eye calibration settings via the rc_visard’s Web GUI

Step 2: Selecting and reporting robot calibration positions

In this step (2a.), the user defines several calibration positions for the robot to approach. These positions must
each ensure that the calibration grid is completely visible in rc_visard’s left camera image. Furthermore, the robot
positions need to be selected properly to achieve a variety of different perspectives for the rc_visard to perceive
the calibration grid. Fig. 6.21 shows a schematic recommendation of four different view points.

Fig. 6.21: Recommended views on the calibration grid during the calibration procedure

Warning: Calibration quality, i.e., the accuracy of the calculated calibration result, depends on the calibration-
grid views provided. The more diverse the perspectives are, the better is the calibration. Choosing very similar
views, i.e., varying the robot positions only slightly between different repetitions of step 2a., may lead to
inaccurate estimation of the desired calibration transformation.

6.7. Hand-eye calibration 54

After the robot reaches each calibration position, the corresponding pose Text
robot of the user-defined robot frame

in the user-defined external reference frame ext needs to be reported to the hand-eye calibration component (2b.).
For this purpose, the component offers different slots to store the reported poses and the rc_visard’s corresponding
left camera images. All filled slots will then be used to calculate the desired calibration transformation between
the rc_visard’s camera frame and either the user-defined robot frame (robot-mounted sensor) or the user-defined
external reference frame ext (static sensor).

Note: To successfully calculate the hand-eye calibration transformation, at least three different robot calibra-
tion poses need to be reported and stored in slots. However, to prevent errors induced by possible inaccurate
measurements, at least four calibration poses are recommended.

To transmit the poses programmatically, the component’s REST-API offers the set_pose service call (see Ser-
vices, Section 6.7.5).

Web GUI example: After completing the calibration settings in step 1 and clicking Next, the Web GUI offers
four different slots (First View, Second View, etc.) for the user to fill manually with robot poses. At the very
top, a live stream from the camera is shown indicating whether the calibration grid is currently detected or
not. Next to each slot, a figure suggests a respective dedicated viewpoint on the grid. For each slot, the
robot must be operated to achieve the suggested view.

6.7. Hand-eye calibration 55

Fig. 6.22: First sample image in the hand-eye calibration process for a statically mounted rc_visard

Once the suggested view is achieved, the user-defined robot frame’s pose needs to be entered manually into
the respective text fields, and the corresponding camera image is captured using the Take Picture to Proceed
button.

Note: The user’s acquisition of robot pose data depends on the robot model and manufacturer – it might
be read from a teaching or handheld device, which is shipped with the robot.

Warning: Please be careful to correctly and accurately enter the values; even small variations or typos
may lead to calibration-process failure.

This procedure is repeated four times in total. Complying to the suggestions to observe the grid from above,
left, front, and right, as sketched in Fig. 6.21, in this example the following corresponding camera images
have been sent to the hand-eye calibration component with their associated robot pose:

6.7. Hand-eye calibration 56

Fig. 6.23: Recorded camera images as input for the calibration procedure

Step 3: Calculating and saving the calibration transformation

The final step in the hand-eye calibration routine consists of issuing the desired calibration transformation to be
computed from the collected poses and camera images. The REST-API offers this functionality via the calibrate
service call (see Services, Section 6.7.5). Depending on the way the rc_visard is mounted, this service computes
and returns the transformation (i.e., the pose) between the camera frame and either the user-defined robot frame
(robot-mounted sensor) or the user-defined external reference frame ext (statically mounted sensor); see Sensor
mounting (Section 6.7.2).

To enable users to judge the quality of the resulting calibration transformation, the component also reports a cali-
bration error. This value is measured in pixels and denotes the root mean square of the reprojection error averaged
over all calibration slots and all corners of the calibration grid. However for a more intuitive understanding, this
measurement might be normalized by utilizing rc_visard’s focal length 𝑓 in pixels:

𝐸 =
𝐸camera

𝑓
.

Note: The rc_visard reports a focal length factor via its various interfaces. It relates to the image width for
supporting different image resolutions. The focal length 𝑓 in pixels can be easily obtained by multiplying the
focal length factor by the image width in pixels.

The value 𝐸 can now be interpreted as an object-related error in meters in the 3D-world. Given that the distance
between the calibration grid and the rc_visard is one meter, the average accuracy associated with transforming
the grid’s coordinates from the camera frame to the target frame is 1 · 𝐸 m; assuming a distance of 0.5 meters, it
measures 0.5 · 𝐸 m, etc.

Web GUI example: The Web GUI automatically triggers computation of the calibration result immediately after
taking the last of the four pictures. The user just needs to click the Next button to proceed to the result. In
this example with a statically mounted rc_visard, the resulting output is the pose of the sensor’s left camera
in the world coordinate system of the robot – represented in the pose format as specified in step 1 of the
calibration routine.

The reported error of 𝐸camera = 0.4 pixels in Fig. 6.24 transforms into a calibration accuracy of 𝐸 =
𝐸camera

𝑓 ≈ 0.4
1081.46 ≈ 0.00036, which is 0.36 mm at 1 meter distance – a submillimeter accuracy for this

calibration run.

6.7. Hand-eye calibration 57

Fig. 6.24: Result of the hand-eye calibration process displayed in the Web GUI

6.7.4 Parameters

The hand-eye calibration component is called rc_hand_eye_calibration in the REST-API and is represented
by the Hand-Eye Calibration tab in the Web GUI (Section 4.5). The user can change the calibration parameters
there or use the REST-API interface (Section 8.2).

Parameter overview

This component offers the following run-time parameters.

Table 6.9: The rc_hand_eye_calibration component’s run-time pa-
rameters

Name Type Min Max Default Description
grid_height float64 0.0 10.0 0.0 The height of the calibration pattern in meters
grid_width float64 0.0 10.0 0.0 The width of the calibration pattern in meters
robot_mounted bool False True True Whether the camera is mounted on the robot

This component reports no status values.

6.7. Hand-eye calibration 58

Description of run-time parameters

The parameter descriptions are given with the corresponding Web GUI names in brackets.

grid_width (Grid Width (m)) Width of the calibration grid in meters. The width should be measured with a very
great accuracy, preferably with sub-millimeter accuracy.

grid_height (Grid Height (m)) Height of the calibration grid in meters. The height should be measured with a
very great accuracy, preferably with sub-millimeter accuracy.

robot_mounted (Sensor Mounting) If set to 1, the rc_visard is mounted on the robot. If set to 0, the rc_visard
is mounted statically and the calibration grid is mounted on the robot.

(Pose) For convenience, the user can choose in the Web GUI between calibration in XYZABC format or in
XYZ+quaternion format (see Pose formats, Section 13.1). When calibrating using the REST-API, the cali-
bration result will always be given in XYZ+quaternion.

6.7.5 Services

The REST-API service calls offered to programmatically conduct the hand-eye calibration and to store or restore
this component’s parameters are explained below.

save_parameters With this service call, the current parameter settings of the hand-eye calibration component
are persisted to the rc_visard. That is, these values are applied even after reboot.

This service requires no arguments.

This service returns no response.

reset_defaults restores and applies the default values for this component’s parameters (“factory reset”). Does
not affect the calibration result itself or any of the slots saved during calibration. Only parameters such as
the grid dimensions and the mount type will be reset.

Warning: The user must be aware that calling this service causes the current parameter settings to be
irrecoverably lost.

This service requires no arguments.

This service returns no response.

set_pose provides a robot pose as calibration pose to the hand-eye calibration routine.

This service requires the following arguments:

{
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "int32"

}

This service returns the following response:

6.7. Hand-eye calibration 59

{
"message": "string",
"status": "int32",
"success": "bool"

}

The slot argument is used to assign numbers to the different calibration poses. At each instant when
set_pose is called, an image is recorded. This service call fails if the grid was undetectable in the current
image.

Table 6.10: Return codes of the set_pose service call
status success Description

1 true pose stored successfully
3 true pose stored successfully; collected enough poses for calibration, i.e., ready to

calibrate
4 false calibration grid was not detected, e.g., not fully visible in camera image
8 false no image data available
12 false given orientation values are invalid

reset_calibration deletes all previously provided poses and corresponding images. The last saved calibration
result is reloaded. This service might be used to (re-)start the hand-eye calibration from scratch.

This service requires no arguments.

This service returns the following response:

{
"message": "string",
"status": "int32",
"success": "bool"

}

calibrate calculates and returns the hand-eye calibration transformation with the robot poses configured by the
set_pose service.

Note: For calculating the hand-eye calibration transformation at least three robot calibration poses are
required (see set_pose service). However, four calibration poses are recommended.

This service requires no arguments.

This service returns the following response:

{
"error": "float64",
"message": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"status": "int32",

6.7. Hand-eye calibration 60

"success": "bool"
}

Table 6.11: Return codes of the calibrate service call
status success Description

0 true calibration successful; returned resulting calibration pose
1 false not enough poses to perform calibration
3 false given calibration grid dimensions are not valid

save_calibration persistently saves the result of hand-eye calibration to the rc_visard and overwrites the ex-
isting one. The stored result can be retrieved any time by the get_calibration service.

This service requires no arguments.

This service returns the following response:

{
"message": "string",
"status": "int32",
"success": "bool"

}

Table 6.12: Return codes of the save_calibration service call
status success Description

0 true calibration saved successfully
1 false could not save calibration file
2 false calibration result is not available

remove_calibration removes the persistent hand-eye calibration on the rc_visard. After this call the
get_calibration service reports again that no hand-eye calibration is available.

This service requires no arguments.

This service returns the following response:

{
"message": "string",
"status": "int32",
"success": "bool"

}

Table 6.13: Return codes of the get_calibration service call
status success Description

0 true removed persistent calibration, sensor reports as uncalibrated
1 true no persistent calibration found, sensor reports as uncalibrated
2 false could not remove persistent calibration

get_calibration returns the hand-eye calibration currently stored on the rc_visard.

This service requires no arguments.

This service returns the following response:

{
"error": "float64",
"message": "string",
"pose": {

"orientation": {

6.7. Hand-eye calibration 61

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"status": "int32",
"success": "bool"

}

Table 6.14: Return codes of the get_calibration service call
status success Description

0 true returned valid calibration pose
2 false calibration result is not available

6.7. Hand-eye calibration 62

7 Optional software components

The rc_visard offers optional software components that can be activated by purchasing a separate license (Section
9.6).

The rc_visard’s optional software consists of the following components:

• SLAM (rc_slam, Section 7.1) performs simultaneous localization and mapping for correcting accumu-
lated poses. The rc_visard’s covered trajectory is offered via the REST-API interface (Section 8.2).

• IO and Projector Control (rc_iocontrol, Section 7.2) provides control over the general purpose inputs
and outputs with special modes for controlling an external random dot projector.

• TagDetect (rc_april_tag_detect and rc_qr_code_detect, Section 7.3) allows the detection of April-
Tags and QR codes, as well as the estimation of their poses.

• ItemPick (rc_itempick, Section 7.4) provides an out-of-the-box perception solution for robotic pick-and-
place applications with suction grippers.

7.1 SLAM

The SLAM component is part of the sensor dynamics component. It provides additional accuracy for the pose
estimate of the stereo INS. When the rc_visard moves through the world, the pose estimate slowly accumulates
errors over time. The SLAM component can correct these pose errors by recognizing previously visited places.

The acronym SLAM stands for Simultaneous Localization and Mapping. The SLAM component creates a map
consisting of the image features as used in the visual odometry component. The map is later used to correct
accumulated pose errors. This is most apparent in applications where, e.g., a robot returns to a previously visited
place after covering a large distance (this is called a loop closure). In this case, the robot can re-detect image
features that are already stored in its map and can use this information to correct the drift in the pose estimate that
accumulated since the last visit.

When closing a loop, not only the current pose, but also the past pose estimates (the trajectory of the rc_visard),
are corrected. Continuous trajectory correction leads to a more accurate map. On the other hand, the accuracy of
the full trajectory is important when it is used to build an integrated world model, e.g., by projecting the 3D point
clouds obtained (see Computing depth images and point clouds, Section 6.2.2) into a common coordinate frame.
The full trajectory can be requested from the SLAM component for this purpose.

Note: The SLAM component is optionally available for the rc_visard and will run on board the sensor. If a
SLAM license is stored on the rc_visard, then the SLAM component is shown as Available on the Web GUI’s
Overview page and in the License section of the System page.

7.1.1 Usage

The SLAM component can be activated at any time, either via the rc_dynamics interface (see the documentation
of the respective Services, Section 6.3.3) or from the Dynamics page of the Web GUI.

The pose estimate of the SLAM component will be initialized with the current estimate of the stereo INS - and
thus the origin will be where the stereo INS was started.

63

Since the SLAM component builds on the motion estimates of the stereo INS component, the latter will automat-
ically be started up if it is not yet running when SLAM is started.

When the SLAM component is running, the corrected pose estimates will be available via the datastreams pose,
pose_rt, and dynamics of the rc_dynamics component.

The full trajectory is available through the service get_trajectory, see Services (Section 7.1.4) below for details.

To store the feature map on the rc_visard, the SLAM component provides the service save_map, which can be
used only during runtime (state “RUNNING”) or after stopping (state “HALTED”). A stored map can be loaded
before startup using the service load_map, which is only applicable in state “IDLE” (use the reset service to go
back to “IDLE” when SLAM is in state “HALTED”).

Note that mistaken localization at (visually) similar places may happen more easily when initially localizing in
a loaded map than when localizing during continuous operation. Choosing a starting point with a unique visual
appearance avoids this problem.

The SLAM component will therefore assume that the rc_visard is started in the rough vincinity (a few meters)
of the origin of the map. The origin of the map is where the Stereo INS module was started when the map was
recorded.

7.1.2 Memory limitations

In contrast to the other software components running on the rc_visard, the SLAM component needs to accumulate
data over time, e.g., motion measurements and image features. Further, the optimization of the trajectory requires
substantial amounts of memory, particularly when closing large loops. Therefore the memory requirements of the
SLAM component increase over time.

Given the memory limitations of the hardware, the SLAM component needs to reduce its own memory footprint
when running continuously. When the available memory runs low, the SLAM component will fix parts of the
trajectory, i.e. no further optimization will be done on these parts. A minimum of 10 minutes of the trajectory will
be kept unfixed at all times.

When the available memory runs low despite the above measures, two options are available. The first option is
that the SLAM component automatically goes to the HALTED state, where it stops processing, but the trajectory
(up to the stopping time) is still available. This is the default behavior.

The second option is to keep running until the memory is exhausted. In that case, the SLAM component will be
restarted. If the autorecovery parameter is set to true, the SLAM component will recover its previous position
and resume mapping. Otherwise it will go to FATAL state, requiring to be restarted via the rc_dynamics interface
(see Services, Section 6.3.3).

The operation time until the memory limit is reached is strongly dependent on the trajectory of the sensor.

7.1.3 Parameters

The SLAM component is called rc_slam in the REST-API. The user can change the SLAM parameters using the
REST-API interface.

Parameter overview

This component offers the following run-time parameters.

Table 7.1: The rc_slam component’s run-time parameters
Name Type Min Max Default Description
autorecovery bool False True True In case of fatal errors recover corrected

position and restart mapping
halt_on_low_memory bool False True True When the memory runs low, go to halted state

This component reports the following status values.

7.1. SLAM 64

Table 7.2: The rc_slam component’s status values
Name Description
state The current state of the rc_slam node
trajectory_poses Number of poses in the estimated trajectory

The reported state can take one of the following values.

Table 7.3: Possible states of the rc_slam component
State name Description
IDLE The component is ready, but idle. No trajectory data is available.
WAITING_FOR_DATA The component was started but is waiting for data from stereo INS or VO.
RUNNING The component is running.
HALTED The component is stopped. The trajectory data is still available. No new information is processed.
RESETTING The component is being stopped and the internal data is being cleared.
RESTARTING The component is being restarted.
FATAL A fatal error has occured.

7.1.4 Services

The SLAM component offers the following services.

Note: Activation and deactivation of the SLAM component is done via the service interface of rc_dynamics
(see Services, Section 6.3.3).

reset clears the internal state of the SLAM component. This service is to be used after stopping the SLAM com-
ponent using the rc_dynamics interface (see the respective Services, Section 6.3.3). The SLAM component
maintains the estimate of the full trajectory even when stopped. This service clears this estimate and frees
the respective memory. The returned status is RESETTING.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

get_trajectory

With this service call the trajectory can be retrieved. The service arguments allow to select a
subsection of the trajectory by defining a start_time and an end_time. Both are optional,
i.e., they could be left empty or filled with zero values, which results in the subsection to in-
clude the trajectory from the very beginning, or to the very end, respectively, or both. If not
empty or zero, they can be defined either as absolute timestamps or to be relative to the trajectory
(start_time_relative and end_time_relative flags). If defined to be relative, the values’
signs indicate to which point in time they relate to: Positive values define an offset to the tra-
jectory start time; negative values are interpreted as an offset from the trajectory end time. The
below diagram illustrates three examples for the relative parameterization.

7.1. SLAM 65

rc_slam
started

rc_slam
stopped

Time (hh:mm:ss)

Whole trajectory

+60s

+15s

– 60s

+15s
–15s

Selected subset

–15s

1
2:

0
0:

00

12
:0

0:
15

1
2:

0
1:

00

12
:0

1:
15

start_time

end_time

Parameters
(relative)

Fig. 7.1: Examples for combinations of relative start and end times for the get_trajectory service. All combi-
nations shown select the same subset of the trajectory.

Note: A relative start_time of zero will select everything from the start of the trajectory, whereas a
relative end_time of zero will select everything to the end of the trajectory.

This service requires the following arguments:

{
"end_time": {

"nsec": "int32",
"sec": "int32"

},
"end_time_relative": "bool",
"start_time": {
"nsec": "int32",
"sec": "int32"

},
"start_time_relative": "bool"

}

This service returns the following response:

{
"trajectory": {

"name": "string",
"parent": "string",
"poses": [

{
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",

7.1. SLAM 66

"y": "float64",
"z": "float64"

}
},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

],
"producer": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

save_map

Stores the current state as a map to persistent memory. The map consists of a set of fixed map
frames. It does not contain the full trajectory that has been covered.

Note: Only abstract feature positions and descriptions are stored in the map. No actual
footage of the cameras is stored with the map, nor is it possible to reconstruct images or
image parts from the stored information.

Warning: The map is lost on software updates or rollbacks

This service requires no arguments.

This service returns the following response:

{
"return_code": {
"message": "string",
"value": "int16"

}
}

load_map

Loads a previously saved map. This is only applicable when the SLAM component is IDLE. It
is not possible to load a map into a running system. A loaded map can be cleared with the reset
service call.

This service requires no arguments.

This service returns the following response:

{
"return_code": {
"message": "string",
"value": "int16"

}
}

remove_map

Removes the stored map from the persistent memory.

7.1. SLAM 67

This service requires no arguments.

This service returns the following response:

{
"return_code": {
"message": "string",
"value": "int16"

}
}

7.2 IO and Projector Control

The IOControl component allows reading the status of the general purpose digital inputs and controlling the digital
general purpose outputs (Wiring, Section 3.5). The outputs can be set to low or high, or configured to be high for
the exposure time of every image. Additionally, the outputs can be configured to be high for the exposure time of
every second image.

Note: The IOControl component is optional and requires the purchase of a separate license (Section 9.6).

7.2.1 Parameters

The IOControl component is called rc_iocontrol in the REST-API. The user can change the parame-
ters via REST-API (REST-API interface, Section 8.2) or GigE Vision using the DigitalIOControl parameters
LineSelector and LineSource (Category: DigitalIOControl, Section 8.1.1).

Parameter overview

This component offers the following run-time parameters.

Table 7.4: The rc_iocontrol component’s run-time parameters
Name Type Min Max Default Description
out1_mode string - - ExposureActive Low, High, ExposureActive,

ExposureAlternateActive
out2_mode string - - Low Low, High, ExposureActive,

ExposureAlternateActive

This component reports no status values.

Description of run-time parameters

out1_mode and out2_mode The output modes for GPIO Out 1 and Out 2 can be set individually:

Low sets the ouput permanently to low. This is the factory default of Out 2.

High sets the output permanently to high.

ExposureActive sets the output to high for the exposure time of every image. This is the factory default
of Out 1.

ExposureAlternateActive sets the output to high for the exposure time of every second image.

Figure Fig. 7.2 shows which images are used for stereo matching and transmission via GigE Vision in
ExposureActive mode with a user defined frame rate of 8 Hz.

7.2. IO and Projector Control 68

Internal acquisition

Camera image

GPIO Out 1
Disparity image

Fig. 7.2: Example of using the ExposureActive mode for GPIO Out 1 with a user defined frame rate setting of
8 Hz. The internal image acquisition is always 25 Hz. GPIO Out 1 is high for the exposure time of every image.
A disparity image is computed for camera images that are send out via GigE Vision according to the user defined
frame rate.

The mode ExposureAlternateActive is meant to be used when an external random dot projector is connected
to the GPIO Out 1 or Out 2 of the rc_visard. A side effect of setting any output to ExposureAlternateActive
is that the stereo matching (Section 6.2) component only uses images where the output that was configured
ExposureAlternateActive is high, i.e. projector is on. The maximum framerate that is used for stereo matching
is therefore halve of the frame rate configured by the user (see FPS, Section 6.1.3). All other components like
visual odometry (Section 6.4), TagDetect (Section 7.3) and ItemPick (Section 7.4) use images where the output is
low, i.e. projector is off. Figure Fig. 7.3 shows an example.

Internal acquisition

Camera image

GPIO Out 1
Disparity image

Fig. 7.3: Example of using the ExposureAlternateActive mode for GPIO Out 1 with a user defined frame rate
setting of 8 Hz. The internal image acquisition is always 25 Hz. GPIO Out 1 is high for the exposure time of
every second image. A disparity image is computed for images where Out 1 is high and that are send out via
GigE Vision according to the user defined frame rate. In ExposureAlternateActive mode, images are always
transmitted pairwise. One with Out 1 high for which a disparity image might be available and one with Out 1 low.

Note: In ExposureAlternateActive mode, an image with output high (i.e. with projection) is always 40 ms
away from an image with output low (i.e. without projection), regardless of the user configured frame rate.
This needs to be considered when synchronizing disparity and camera images without projection in this special
mode.

The functionality can also be controlled by the digital IO control parameters of the GenICam interface (Category:
DigitalIOControl, Section 8.1.1).

7.2.2 Services

The IOControl component offers the following services.

get_io_values This service call retrieves the current state of the general purpose inputs and outputs. The re-
turned time stamp is the time of measurement.

This service requires no arguments.

This service returns the following response:

{
"in1": "bool",
"in2": "bool",
"out1": "bool",
"out2": "bool",
"return_code": {
"message": "string",
"value": "int16"

7.2. IO and Projector Control 69

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

save_parameters With this service call, the component’s current parameter settings are persisted to the
rc_visard. That is, these values are applied even after reboot.

This service requires no arguments.

This service returns no response.

reset_defaults Restores and applies the default values for this component’s parameters (“factory reset”).

This service requires no arguments.

This service returns no response.

Warning: The user must be aware that calling this service causes the current parameter settings for the
IOControl component to be irrecoverably lost.

7.3 TagDetect

7.3.1 Introduction

The TagDetect components run on board the rc_visard and allow the detection of 2D bar codes and tags. Currently,
there are TagDetect components for QR codes and AprilTags. The components furthermore compute the position
and orientation of each tag in the 3D camera coordinate system, making it simple to manipulate a tag with a robot
or to localize the camera with respect to a tag.

Note: The TagDetect components are optional and require a separate license (Section 9.6) to be purchased.

Tag detection is made up of three steps:

1. Tag reading on the 2D image pair (see Tag reading, Section 7.3.2).

2. Estimation of the pose of each tag (see Pose estimation, Section 7.3.3).

3. Re-identification of previously seen tags (see Tag re-identification, Section 7.3.4).

In the following, the two supported tag types are described, followed by a comparison.

7.3. TagDetect 70

QR code

Fig. 7.4: Sample QR code

QR codes are two-dimensional bar codes that contain arbitrary user-defined data. There is wide support for
decoding of QR codes on commodity hardware such as smartphones. Also, many online and offline tools are
available for the generation of such codes.

The “pixels” of a QR code are called modules. Appearance and resolution of QR codes change with the amount
of data they contain. While the special patterns in the three corners are always 7 modules wide, the number of
modules between them increases the more data is stored. The lowest-resolution QR code is of size 21x21 modules
and can contain up to 152 bits.

Even though many QR code generation tools support generation of specially designed QR codes (e.g., containing
a logo, having round corners, or having dots as modules), a reliable detection of these tags by the rc_visard’s
TagDetect component is not guaranteed. The same holds for QR codes which contain characters that are not part
of regular ASCII.

AprilTag

Fig. 7.5: A 16h5 tag (left) and a 36h11 tag (right). AprilTags consist of a mandatory white (a) and black (b) border
and a variable amount of data bits (c).

AprilTags are similar to QR codes. However, they are specifically designed for robust identification at large
distances. As for QR codes, we will call the tag pixels modules. Fig. 7.5 shows how AprilTags are structured.
They are surrounded by a mandatory white and black border, each one module wide. In the center, they carry a
variable amount of data modules. Other than QR codes, they do not contain any user-defined information but are

7.3. TagDetect 71

identified by a predefined family and ID. The tags in Fig. 7.5 for example are of family 16h5 and 36h11 and have
id 0 and 11, respectively. All supported families are shown in Table 7.5.

Table 7.5: AprilTag families
Family Number of tag IDs Recommended
16h5 30 -
25h7 242 -
25h9 35 o
36h10 2320 o
36h11 587 +

For each family, the number before the “h” states the number of data modules contained in the tag: While a 16h5
tag contains 16 (4x4) data modules ((c) in Fig. 7.5), a 36h11 tag contains 36 (6x6) modules. The number behind
the “h” refers to the Hamming distance between two tags of the same family. The higher, the more robust is the
detection, but the fewer individual tag IDs are available for the same number of data modules (see Table 7.5).

The advantage of fewer data modules (as for 16h5 compared to 36h11) is the lower resolution of the tag. Hence,
each tag module is larger and the tag therefore can be detected from a larger distance. This, however, comes
at a price: First, fewer data modules lead to fewer individual tag IDs. Second, and more importantly, detection
robustness is significantly reduced due to a higher false positive rate; i.e, tags are mixed up or nonexistent tags are
detected in random image texture or noise.

For these reasons we recommend using the 36h11 family and highly discourage the use of the 16h5 and 25h7
families. The latter families should only be used if a large detection distance really is necessary for an application.
However, the maximum detection distance increases only by approximately 25% when using a 16h5 tag instead
of a 36h11 tag.

Pre-generated AprilTags can be downloaded at the AprilTag project website (https://april.eecs.umich.edu/
software/apriltag.html). There, each family consists of multiple PNGs containing single tags and one PDF con-
taining each tag on a separate page. Each pixel in the PNGs corresponds to one AprilTag module. When printing
the tags, special care must be taken to also include the white border around the tag that is contained in the PNGs
as well as PDFs (see (a) in Fig. 7.5). Moreover, the tags should be scaled to the desired printing size without any
interpolation, so that the sharp edges are preserved.

Comparison

Both QR codes and AprilTags have their up and down sides. While QR codes allow arbitrary user-defined data
to be stored, AprilTags have a pre-defined and limited set of tags. On the other hand, AprilTags have a lower
resolution and can therefore be detected at larger distances. Moreover, the continuous white to black edge around
AprilTags allow for more precise pose estimation.

Note: If user-defined data is not required, AprilTags should be preferred over QR codes.

7.3.2 Tag reading

The first step in the tag detection pipeline is reading the tags on the 2D image pair. This step takes most of the
processing time and its precision is crucial for the precision of the resulting tag pose. To control the speed of
this step, the quality parameter can be set by the user. It results in a downscaling of the image pair before
reading the tags. “H” (High) yields the largest maximum detection distance and highest precision, but also the
highest processing time. “L” (Low) results in the smallest maximum detection distance and lowest precision,
but processing requires less than half of the time. “M” (Medium) lies in between. Please note that this quality
parameter has no relation to the quality parameter of Stereo matching (Section 6.2).

7.3. TagDetect 72

https://april.eecs.umich.edu/software/apriltag.html
https://april.eecs.umich.edu/software/apriltag.html

Fig. 7.6: Visualization of module size 𝑠, size of a tag in modules 𝑟, and size of a tag in meters 𝑡 for AprilTags
(left) and QR codes (right)

The maximum detection distance 𝑧 at quality “H” can be approximated by using the following formulae,

𝑧 =
𝑓𝑠

𝑝
,

𝑠 =
𝑡

𝑟
,

where 𝑓 is the focal length (Section 6.1.2) in pixels and 𝑠 is the size of a module in meters. 𝑠 can easily be
calculated by the latter formula, where 𝑡 is the size of the tag in meters and 𝑟 is the width of the code in modules
(for AprilTags without the white border). Fig. 7.6 visualizes these variables. 𝑝 denotes the number of image pixels
per module required for detection. It is different for QR codes and AprilTags. Moreover, it varies with the tag’s
angle to the camera and illumination. Approximate values for robust detection are:

• AprilTag: 𝑝 = 5 pixels/module

• QR code: 𝑝 = 6 pixels/module

The following tables give sample maximum distances for different situations, assuming a focal length of 1075
pixels and the parameter quality to be set to “H”.

Table 7.6: Maximum detection distance examples for AprilTags with a
width of 𝑡 = 4 cm

AprilTag family Tag width Maximum distance
36h11 (recommended) 8 modules 1.1 m
16h5 6 modules 1.4 m

Table 7.7: Maximum detection distance examples for QR codes with a
width of 𝑡 = 8 cm

Tag width Maximum distance
29 modules 0.49 m
21 modules 0.70 m

7.3.3 Pose estimation

For each detected tag, the pose of this tag in the camera coordinate frame is estimated. A requirement for pose
estimation is that a tag is fully visible in the left and right camera image. The coordinate frame of the tag is aligned
as shown below.

7.3. TagDetect 73

Fig. 7.7: Coordinate frames of AprilTags (left) and QR codes (right)

The z-axis is pointing “into” the tag. Please note that for AprilTags, although having the white border included
in their definition, the coordinate system’s origin is placed exactly at the transition from the white to the black
border. Since AprilTags do not have an obvious orientation, the origin is defined as the upper left corner in the
orientation they are pre-generated in.

During pose estimation, the tag’s size is also estimated, while assuming the tag to be square. For QR codes, the
size covers the full tag. For AprilTags, the size covers only the black part of the tag, hence ignoring the outermost
white border.

The user can also specify the approximate size (±10%) of tags with a specific ID. All tags not matching this size
contraint are automatically filtered out. This information is further used to resolve ambiguities in pose estimation
that may arise if multiple tags with the same ID are visible in the left and right image and these tags are aligned in
parallel to the image rows.

Note: For best pose estimation results one should make sure to accurately print the tag and to attach it to a rigid
and as planar as possible surface. Any distortion of the tag or bump in the surface will degrade the estimated
pose.

Warning: It is highly recommended to set the approximate size of a tag. Otherwise, if multiple tags with
the same ID are visible in the left or right image, pose estimation may compute a wrong pose if these tags
have the same orientation and are approximately aligned in parallel to the image rows. However, even if the
approximate size is not given, the TagDetect components try to detect such situations and filter out affected
tags.

Below tables give approximate precisions of the estimated poses of AprilTags and QR codes. We distinguish
between lateral precision (i.e., in x and y direction) and precision in z direction. It is assumed that quality is set
to “H” and that the rc_visard’s viewing direction is roughly parallel to the tag’s normal. The size of a tag does
not have a significant effect on the lateral or z precision; however, in general, larger tags improve precision. With
respect to precision of the orientation especially around the x and y axes, larger tags clearly outperform smaller
ones.

Table 7.8: Approximate pose precision for AprilTags
Distance rc_visard 65 - lateral rc_visard 65 - z rc_visard 160 - lateral rc_visard 160 - z
0.3 m 0.4 mm 0.9 mm 0.4 mm 0.8 mm
1.0 m 0.7 mm 3.3 mm 0.7 mm 3.3 mm

Table 7.9: Approximate pose precision for QR codes
Distance rc_visard 65 - lateral rc_visard 65 - z rc_visard 160 - lateral rc_visard 160 - z
0.3 m 0.6 mm 2.0 mm 0.6 mm 1.3 mm
1.0 m 2.6 mm 15 mm 2.6 mm 7.9 mm

7.3. TagDetect 74

7.3.4 Tag re-identification

Each tag has an ID; for AprilTags it is the family plus tag ID, for QR codes it is the contained data. However, these
IDs are not unique, since the same tag may appear multiple times in a scene.

For distinction of these tags, the TagDetect components also assign each detected tag a unique identifier. To help
the user identifying an identical tag over multiple detections, tag detection tries to re-identify tags; if successful,
a tag is assigned the same unique identifier again. Tag re-identification compares the positions of the corners
of the tags in a static coordinate frame to find identical tags. Tags are assumed identical if they did not or only
slightly move in that static coordinate frame. For that static coordinate frame to be available, dynamic-state
estimation (Section 6.3) must be switched on. If it is not, the sensor is assumed to be static; tag re-identification
will then not work across sensor movements.

By setting the max_corner_distance threshold, the user can specify how much a tag is allowed move in the static
coordinate frame between two detections to be considered identical. This parameter defines the maximum distance
between the corners of two tags, which is shown in Fig. 7.8. The Euclidean distances of all four corresponding tag
corners are computed in 3D. If none of these distances exceeds the threshold, the tags are considered identical.

Fig. 7.8: Simplified visualization of tag re-identification. Euclidean distances between associated tag corners in
3D are compared (red arrows).

After a number of tag detection runs, previously detected tag instances will be discarded if they are not detected
in the meantime. This can be configured by the parameter forget_after_n_detections.

7.3.5 Interfaces

There are two separate components for tag detection of the sensor, one for detecting AprilTags and one for QR
codes, named rc_april_tag_detect and rc_qr_code_detect, respectively. Apart from the component names
they share the same interface definition.

Parameters and status values

In the following, the parameters and status values are listed based on the example of rc_qr_code_detect. They
are the same for rc_april_tag_detect.

This component offers the following run-time parameters.

7.3. TagDetect 75

Table 7.10: The rc_qr_code_detect component’s run-time parameters
Name Type Min Max Default Description
detect_inverted_tags bool False True False Detect tags with black and

white exchanged
forget_after_n_detections int32 1 1000 30 Number of detection runs

after which to forget about a
previous tag during tag
re-identification

max_corner_distance float64 0.001 0.01 0.005 Maximum distance of
corresponding tag corners in
meters during tag
re-identification

quality string - - H Quality of tag detection (H,
M or L)

use_cached_images bool False True False Use most recently received
image pair instead of waiting
for a new pair

This component reports the following status values.

Table 7.11: The rc_qr_code_detect component’s status values
Name Description
state The current state of the node

The reported state can take one of the following values.

Table 7.12: Possible states of the TagDetect components
State name Description
IDLE The component is idle.
RUNNING The component is running and ready for tag detection.
FATAL A fatal error has occurred.

Services

The TagDetect components implement a state machine for starting and stopping. The actual tag detection can be
triggered via detect.

start starts the component by transitioning from IDLE to RUNNING.

When running, the component receives images from the stereo camera and is ready to perform tag detec-
tions. To save computing resources on the sensor, the component should only be running when necessary.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

stop stops the component by transitioning to IDLE.

This transition can be performed from state RUNNING and FATAL. All tag re-identification information is
cleared during stopping.

This service requires no arguments.

This service returns the following response:

7.3. TagDetect 76

{
"accepted": "bool",
"current_state": "string"

}

restart restarts the component. If in RUNNING or FATAL, the component will be stopped and then started. If in
IDLE, the component will be started.

This service requires no arguments.

This service returns the following response:

{
"accepted": "bool",
"current_state": "string"

}

detect triggers a tag detection. Depending on the use_cached_images parameter, the component will use the
latest received image pair (if set to true) or wait for a new pair that is captured after the service call was
triggered (if set to false, this is the default). Even if set to true, tag detection will never use one image pair
twice.

It is recommended to call detect in state RUNNING only. It is also possible to be called in state IDLE,
resulting in an auto-start and stop of the component. This, however, has some drawbacks: First, the call will
take considerably longer; second, tag re-identification will not work. It is therefore highly recommended to
manually start the component before calling detect.

This service requires the following arguments:

{
"tags": [

{
"id": "string",
"size": "float64"

}
]

}

This service returns the following response:

{
"return_code": {
"message": "string",
"value": "int16"

},
"tags": [

{
"id": "string",
"instance_id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",

7.3. TagDetect 77

"size": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

],
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

Request: tags is the list of tag IDs that the TagDetect component should detect. For QR codes, the ID is
the contained data. For AprilTags, it is “<family>_<id>”, so, e.g., for a tag of family 36h11 and ID
5, it is “36h11_5”. Naturally, the AprilTag component can only be triggered for AprilTags, and the
QR code component only for QR codes.

The tags list can also be left empty. In that case, all detected tags will be returned. This feature should
be used only during development and debugging of an application. Whenever possible, the concrete
tag IDs should be listed, on the one hand avoiding some false positives, on the other hand speeding up
tag detection by filtering tags not of interest.

For AprilTags, the user can not only specify concrete tags but also a complete family by setting the ID
to “<family>”, so, e.g., “36h11”. All tags of this family will then be detected. It is further possible to
specify multiple complete tag families or a combination of concrete tags and complete tag families;
for instance, triggering for “36h11”, “25h9_3”, and “36h10” at the same time.

In addition to the ID, the approximate size (±10%) of a tag can be set with the size parameter.
As described in Pose estimation, Section 7.3.3, this information helps to resolve ambiguities in pose
estimation that may arise in certain situations.

Response: timestamp is set to the timestamp of the image pair the tag detection ran on.

tags contains all detected tags. id is the ID of the tag, similar to id in the request. instance_id
is the random unique identifier of the tag assigned by tag re-identification. pose contains position
and orientation. The orientation is in quaternion format. pose_frame is set to the coordinate frame
above pose refers to. It will always be “camera”. size will be set to the estimated tag size in meters;
for AprilTags, the white border is not included.

return_code holds possible warnings or error codes in value, which are represented by a value
greater than or less than 0, respectively. The respective error message can be found in message. The
following table contains a list of common codes:

Code Description
0 Success
-1 An invalid argument was provided
-4 A timeout occurred while waiting for the image pair
-9 The license is not valid
-101 Internal error
-102 There was a backwards jump of system time
-200 A fatal internal error occurred
101 A warning occurred during tag reading
102 A warning occurred during pose estimation
200 Multiple warnings occurred; see list in message

201 The component was not in state RUNNING

Tags might be omitted from the detect response due to several reasons, e.g., if a tag is visible in only one
of the cameras or if pose estimation did not succeed. These filtered-out tags are noted in the log, which can
be accessed as described in Downloading log files (Section 9.7).

7.3. TagDetect 78

Due to changes in system time on the sensor there might occur jumps of timestamps, forward as well as
backward (see Time synchronization, Section 8.4). Forward jumps do not have an effect on the TagDetect
component. Backward jumps, however, invalidate already received images. Therefore, in case a backwards
time jump is detected, an error of value -102 will be issued on the next detect call, also to inform the user
that the timestamps included in the response will jump back.

save_parameters With this service call, the TagDetect component’s current parameter settings are persisted to
the rc_visard. That is, these values are applied even after reboot.

reset_defaults Restores and applies the default values for this component’s parameters (“factory reset”) as
given in the table above.

7.4 ItemPick

The ItemPick component is an optional component that runs on board the rc_visard. It provides an out-of-the-box
perception solution for robotic pick-and-place applications with suction grippers. ItemPick computes possible
grasp poses for the suction device. Each suggested grasp includes a quality value related to the surface available
for grasping. Visualization streams are available for parameter configuration and application tuning.

ItemPick is also ready to be used for bin-picking applications. It offers a load carrier detection solution to provide
grasps for items inside the load carrier.

The ItemPick component works with both static and robot-mounted rc_visard devices and can optionally be
combined with the on-board Hand-eye calibration (Section 6.7) component to provide grasp poses in the user-
configured external reference frame.

Note: The ItemPick component is optional and requires a separate license (Section 9.6) to be purchased.

7.4. ItemPick 79

8 Interfaces

Three interfaces are provided for configuring and obtaining data from the rc_visard:

1. GigE Vision 2.0/GenICam (Section 8.1)

Images and camera related configuration.

2. REST API (Section 8.2)

API to configure the rc_visard, query status information, request streams, etc.

3. rc_dynamics streams (Section 8.3)

Real-time streams containing state estimates with poses, velocities, etc. are provided over the rc_dynamics
interface. It sends protobuf -encoded messages via UDP.

8.1 GigE Vision 2.0/GenICam image interface

Gigabit Ethernet for Machine Vision (“GigE Vision®” for short) is an industrial camera interface standard based
on UDP/IP (see http://www.gigevision.com). The rc_visard is a GigE Vision® version 2.0 device and is hence
compatible with all GigE Vision® 2.0 compliant frameworks and libraries.

GigE Vision® uses GenICam to describe the camera/device features. For more information about this Generic
Interface for Cameras see http://www.genicam.org/.

Via this interface the rc_visard provides features such as

• discovery,

• IP configuration,

• configuration of camera related parameters,

• image grabbing, and

• time synchronization via IEEE 1588-2008 PrecisionTimeProtocol (PTPv2).

Note: The rc_visard supports jumbo frames of up to 9000 bytes. Setting an MTU of 9000 on your GigE Vision
client side is recommended for best performance.

Note: Roboception provides tools and a C++ API with examples for discovery, configuration, and image
streaming via the GigE Vision/GenICam interface. See http://www.roboception.com/download.

8.1.1 Important GenICam parameters

The following list gives an overview of the relevant GenICam features of the rc_visard that can be read and/or
changed via the GenICam interface. In addition to the standard parameters, which are defined in the Standard Fea-
ture Naming Convention (SFNC, see http://www.emva.org/standards-technology/genicam/genicam-downloads/),
rc_visard devices also offer custom parameters that account for special features of the Stereo camera (Section 6.1)
and the Stereo matching (Section 6.2) component.

80

http://www.gigevision.com
http://www.genicam.org/
http://www.roboception.com/download
http://www.emva.org/standards-technology/genicam/genicam-downloads/

Important standard GenICam features

Category: ImageFormatControl

ComponentSelector

• type: Enumeration, one of Intensity, IntensityCombined, Disparity, Confidence, or Error

• default: -

• description: Allows the user to select one of the five image streams for configuration (see Chunk data,
Section 8.1.1).

ComponentIDValue (read-only)

• type: Integer

• description: The ID of the image stream selected by the ComponentSelector.

ComponentEnable

• type: Boolean

• default: -

• description: If set to true, it enables the image stream selected by ComponentSelector; otherwise,
it disables the stream. Using ComponentSelector and ComponentEnable, individual image streams
can be switched on and off.

Width (read-only)

• type: Integer

• description: Image width in pixel of image stream that is currently selected by ComponentSelector.

Height (read-only)

• type: Integer

• description: Image height in pixel of image stream that is currently selected by ComponentSelector.

WidthMax (read-only)

• type: Integer

• description: Maximum width of an image, which is always 1280 pixels.

HeightMax (read-only)

• type: Integer

• description: Maximum height of an image in the streams. This is always 1920 pixels due to the stacked
left and right images in the IntensityCombined stream (see Chunk data, Section 8.1.1).

PixelFormat

• type: Enumeration with some of Mono8, YCbCr411_8 (color sensors only), Coord3D_C16,
Confidence8 and Error8

• description: Pixel format of the selected component. The enumeration only permits to choose the for-
mat among the possibly formats for the selected component. For a color sensor, Mono8 or YCbCr411_8
can be chosen for the Intensity and IntensityCombined component.

Category: AcquisitionControl

AcquisitionFrameRate

• type: Float, ranges from 1 Hz to 25 Hz

• default: 25 Hz

8.1. GigE Vision 2.0/GenICam image interface 81

• description: Frame rate of the camera (FPS, Section 6.1.3).

ExposureAuto

• type: Enumeration, one of Continuous or Off

• default: Continuous

• description: Can be set to Off for manual exposure mode or to Continuous for auto exposure mode
(Exposure, Section 6.1.3).

ExposureTime

• type: Float, ranges from 66 µs to 18000 µs

• default: 5000 µs

• description: The cameras’ exposure time in microseconds for the manual exposure mode (Manual,
Section 6.1.3).

Category: AnalogControl

GainSelector (read-only)

• type: Enumeration, is always All

• default: All

• description: The rc_visard currently supports only one overall gain setting.

Gain

• type: Float, ranges from 0 dB to 18 dB

• default: 0 dB

• description: The cameras’ gain value in decibel that is used in manual exposure mode (Gain, Section
6.1.3).

BalanceWhiteAuto (color sensors only)

• type: Enumeration, one of Continuous or Off

• default: Continuous

• description: Can be set to Off for manual white balancing mode or to Continuous for auto white
balancing. This feature is only available on color sensors (wb_auto, Section 6.1.3).

BalanceRatioSelector (color sensors only)

• type: Enumeration, one of Red or Blue

• default: Red

• description: Selects ratio to be modified by BalanceRatio. Red means red to green ratio and Blue
means blue to green ratio. This feature is only available on color sensors.

BalanceRatio (color sensors only)

• type: Float, ranges from 0.125 to 8

• default: 1.2 if Red and 2.4 if Blue is selected in BalanceRatioSelector

• description: Weighting of red or blue to green color channel. This feature is only available on color
sensors (wb_ratio, Section 6.1.3).

8.1. GigE Vision 2.0/GenICam image interface 82

Category: DigitalIOControl

LineSelector

• type: Enumeration, one of Out1, Out2, In1 or In2

• default: Out1

• description: Selects the input or output line for getting the current status or setting the source.

LineStatus (read-only)

• type: Boolean

• description: Current status of the line selected by LineSelector.

LineStatusAll (read-only)

• type: Integer

• description: Current status of GPIO inputs and outputs represented in the lowest four bits.

Table 8.1: Meaning of bits of LineStatusAll field.
Bit 4 3 2 1
GPIO In 2 In 1 Out 2 Out 1

LineSource (read-only if IOControl component is not licensed)

• type: Enumeration, one of ExposureActive, ExposureAlternateActive, Low or High

• default: ExposureActive for Out1 and Low for Out2

• description: Mode for output line selected by LineSelector as described in the IOControl module
(out1_mode and out2_mode, Section 7.2.1). See also parameter AcquisitionAlternateFilter for
filtering images in ExposureAlternateActive mode.

Category: TransportLayerControl

GevIEEE1588

• type: Boolean

• default: false

• description: Switches PTP synchronization on and off.

Category: Scan3dControl

Scan3dDistanceUnit (read-only)

• type: Enumeration, is always Pixel

• description: Unit for the disparity measurements, which is always Pixel.

Scan3dOutputMode (read-only)

• type: Enumeration, is always DisparityC

• description: Mode for the depth measurements, which is always DisparityC.

Scan3dFocalLength (read-only)

• type: Float

• description: Focal length in pixel of image stream selected by ComponentSelector. In case of the
component Disparity, Confidence and Error, the value also depends on the resolution that is im-
plicitely selected by DepthQuality.

8.1. GigE Vision 2.0/GenICam image interface 83

Scan3dBaseline (read-only)

• type: Float

• description: Baseline of the stereo camera in meter.

Scan3dPrinciplePointU (read-only)

• type: Float

• description: Horizontal location of the principle point in pixel of image stream selected by
ComponentSelector. In case of the component Disparity, Confidence and Error, the value also
depends on the resolution that is implicitely selected by DepthQuality.

Scan3dPrinciplePointV (read-only)

• type: Float

• description: Vertical location of the principle point in pixel of image stream selected by
ComponentSelector. In case of the component Disparity, Confidence and Error, the value also
depends on the resolution that is implicitely selected by DepthQuality.

Scan3dCoordinateScale (read-only)

• type: Float

• description: The scale factor that has to be multiplied with the disparity values in the disparity image
stream to get the actual disparity measurements. This value is always 0.0625.

Scan3dCoordinateOffset (read-only)

• type: Float

• description: The offset that has to be added to the disparity values in the disparity image stream to
get the actual disparity measurements. For the rc_visard, this value is always 0 and can therefore be
disregarded.

Scan3dInvalidDataFlag (read-only)

• type: Boolean

• description: Is always true, which means that invalid data in the disparity image is marked by a
specific value defined by the Scan3dInvalidDataValue parameter.

Scan3dInvalidDataValue (read-only)

• type: Float

• description: Is the value which stands for invalid disparity. This value is always 0, which means that
disparity values of 0 correspond to invalid measurements. To distinguish between invalid disparity
measurements and disparity measurements of 0 for objects which are infinitely far away, the rc_visard
sets the disparity value for the latter to the smallest possible disparity value of 0.0625. This still
corresponds to an object distance of several hundred meters.

Category: ChunkDataControl

ChunkModeActive

• type: Boolean

• default: False

• description: Enables chunk data that is delivered with every image.

8.1. GigE Vision 2.0/GenICam image interface 84

Custom GenICam features of the rc_visard

Category: ImageFormatControl

ExposureTimeAutoMax

• type: Float, ranges from 66 µs to 18000 µs

• default: 7000 µs

• description: Maximal exposure time in auto exposure mode (Auto, Section 6.1.3).

ExposureRegionOffsetX

• type: Integer in the range of 0 to 1280

• default: 0

• description: Horizontal offset of exposure region (Section 6.1.3) in pixel.

ExposureRegionOffsetY

• type: Integer in the range of 0 to 960

• default: 0

• description: Vertical offset of exposure region (Section 6.1.3) in pixel.

ExposureRegionWidth

• type: Integer in the range of 0 to 1280

• default: 0

• description: Width of exposure region (Section 6.1.3) in pixel.

ExposureRegionHeight

• type: Integer in the range of 0 to 960

• default: 0

• description: Height of exposure region (Section 6.1.3) in pixel.

Category: AcquisitionControl

AcquisitionAlternateFilter (read-only if IOControl component is not licensed)

• type: Enumeration, one of Off, OnlyHigh or OnlyLow

• default: Off

• description: If this parameter is set to OnlyHigh (or OnlyLow) and the LineSource is set to
ExposureAlternateActive for any output, then only camera images are delivered that are captured
while the output is high, i.e. a potentially connected projector is on (or low, i.e. a potentially connected
projector is off). This parameter is a simple means for only getting images without projected pattern.
The minimal time difference between camera and disparity images will be about 40 ms in this case
(see IOControl, Section 7.2.1).

Category: Scan3dControl

FocalLengthFactor (read-only)

• type: Float

• description: The focal length scaled to an image width of 1 pixel. To get the focal length in pixels for
a certain image, this value must be multiplied by the width of the received image. See also parameter
Scan3dFocalLength.

8.1. GigE Vision 2.0/GenICam image interface 85

Baseline (read-only)

• type: Float

• description: This parameter is deprecated. The parameter Scan3dBaseline should be used instead.

Category: DepthControl

DepthQuality

• type: Enumeration, one of Low, Medium, High, or StaticHigh

• default: High

• description: Quality of the disparity images. Lower quality results in disparity images with lower
resolution (Quality, Section 6.2.4).

DepthDispRange

• type: Integer, ranges from 32 pixels to 512 pixels

• default: 256 pixels

• description: Maximum disparity value in pixels (Disparity Range, Section 6.2.4).

DepthFill

• type: Integer, ranges from 0 pixel to 4 pixels

• default: 3 pixels

• description: Value in pixels for Fill-In (Section 6.2.4).

DepthSeg

• type: Integer, ranges from 0 pixel to 4000 pixels

• default: 200 pixels

• description: Value in pixels for Segmentation (Section 6.2.4).

DepthMedian

• type: Integer, ranges from 1 pixel to 5 pixels

• default: 1 pixel

• description: Value in pixels for Median filter smoothing (Section 6.2.4).

DepthMinConf

• type: Float, ranges from 0.0 to 1.0

• default: 0.0

• description: Value for Minimum Confidence filtering (Section 6.2.4).

DepthMinDepth

• type: Float, ranges from 0.1 m to 100.0 m

• default: 0.1 m

• description: Value in meters for Minimum Distance filtering (Section 6.2.4).

DepthMaxDepth

• type: Float, ranges from 0.1m to 100.0 m

• default: 100.0 m

• description: Value in meters for Maximum Distance filtering (Section 6.2.4).

DepthMaxDepthErr

8.1. GigE Vision 2.0/GenICam image interface 86

• type: Float, ranges from 0.01 m to 100.0 m

• default: 100.0 m

• description: Value in meters for Maximum Depth Error filtering (Section 6.2.4).

Chunk data

The rc_visard supports chunk parameters that are transmitted with every image. Chunk parameters all have the
prefix Chunk. Their meaning equals their non-chunk counterparts, except that they belong to the corresponding
image, e.g. Scan3dFocalLength depends on ComponentSelector and DepthQuality as both can change the
image resolution. The parameter ChunkScan3dFocalLength that is delivered with an image fits to the resolution
of the corresponding image.

Particularly useful chunk parameters are:

• ChunkComponentID and ChunkComponentIDValue provide the relation of the image to its component (e.g.
camera image or disparity image) without guessing from the image format or size.

• ChunkLineStatusAll provides the status of all GPIOs at the time of image acquisition. See
LineStatusAll above for a description of bits.

• ChunkScan3d... parameters are useful for 3D reconstruction as described in Section Image stream con-
versions (Section 8.1.3).

Chunk data is enabled by setting the GenICam parameter ChunkModeActive to True.

8.1.2 Provided image streams

The rc_visard provides the following five different image streams via the GenICam interface:

Component name PixelFormat Width×Height Description
Intensity

Mono8 (monochrome
sensors)
YCbCr411_8 (color sensors)

1280×960 Left rectified camera image

IntensityCombined

Mono8 (monochrome
sensors)
YCbCr411_8 (color sensors)

1280×1920 Left rectified camera im-
age stacked on right rectified
camera image

Disparity Coord3D_C16

640×480
320×240
214×160

Disparity image in de-
sired resolution, i.e., High,
Medium, or Low

Confidence Confidence8 same as Disparity Confidence image
Error Error8 (custom:

0x81080001)
same as Disparity Disparity error image

Each image comes with a buffer timestamp and the PixelFormat given in the above table. This PixelFormat should
be used to distinguish between the different image types. Images belonging to the same acquisition timestamp can
be found by comparing the GenICam buffer timestamps.

8.1. GigE Vision 2.0/GenICam image interface 87

8.1.3 Image stream conversions

The disparity image contains 16 bit unsigned integer values. These values must be multiplied by the scale
value given in the GenICam feature Scan3dCoordinateScale to get the disparity values 𝑑 in pixels. To com-
pute the 3D object coordinates from the disparity values, the focal length and the baseline as well as the principle
point are required. These parameters are transmitted as GenICam features Scan3dFocalLength, Scan3dBaseline,
Scan3dPrincipalPointU and Scan3dPrincipalPointV. The focal length and principal point depend on the image
resolution of the selected component. Knowing these values, the pixel coordinates and the disparities can be
transformed into 3D object coordinates in the sensor coordinate frame (Section 3.7) using the equations described
in Computing depth images and point clouds (Section 6.2.2).

Assuming that 𝑑𝑖𝑘 is the 16 bit disparity value at column 𝑖 and row 𝑘 of a disparity image, the 3D reconstruction
in meters can be written with the GenICam parameters as

𝑃𝑥 = (𝑖− Scan3dPrincipalPointU)
Scan3dBaseline

𝑑𝑖𝑘 · Scan3dCoordinateScale
,

𝑃𝑦 = (𝑘 − Scan3dPrincipalPointV)
Scan3dBaseline

𝑑𝑖𝑘 · Scan3dCoordinateScale
,

𝑃𝑧 = Scan3dFocalLength
Scan3dBaseline

𝑑𝑖𝑘 · Scan3dCoordinateScale
.

The confidence image contains 8 bit unsigned integer values. These values have to be divided by 255 to get the
confidence as value between 0 an 1.

The error image contains 8 bit unsigned integer values. The error 𝑒𝑖𝑘 must be multiplied by the scale value given
in the GenICam feature Scan3dCoordinateScale to get the disparity-error values 𝑑𝑒𝑝𝑠 in pixels. According to the
description in Confidence and error images (Section 6.2.3), the depth error 𝑧𝑒𝑝𝑠 in meters can be computed with
GenICam parameters as

𝑧𝑒𝑝𝑠 =
𝑒𝑖𝑘 · Scan3dCoordinateScale · Scan3dFocalLength · Scan3dBaseline

(𝑑𝑖𝑘 · Scan3dCoordinateScale)2
.

Note: It is preferable to enable chunk data with the parameter ChunkModeActive and to use
the chunk parameters ChunkScan3dCoordinateScale, ChunkScan3dFocalLength, ChunkScan3dBaseline,
ChunkScan3dPrincipalPointU and ChunkScan3dPrincipalPointV that are delivered with every image, because
their values already fit to the image resolution of the corresponding image.

For more information about disparity, error, and confidence images, please refer to Stereo matching (Section 6.2).

8.2 REST-API interface

Besides the GenICam interface (Section 8.1), the rc_visard offers a comprehensive RESTful web interface (REST-
API) which any HTTP client or library can access. Whereas most of the provided parameters, services, and
functionalities can also be accessed via the user-friendly Web GUI (Section 4.5), the REST-API serves rather as a
machine-to-machine interface to programmatically

• set and get run-time parameters of computation nodes, e.g., of cameras, disparity calculation, and visual
odometry;

• do service calls, e.g., to start and stop individual computational nodes, or to use offered services such as the
hand-eye calibration;

• configure data streams that provide rc_visard’s dynamic state estimates (Section 6.3.2) as described in the
rc_dynamics interface (Section 8.3);

• read the current state of the system and individual computational nodes; and

• update the rc_visard’s firmware or license.

8.2. REST-API interface 88

Note: In the rc_visard’s REST-API, a node is a computational component that bundles certain algorithmic
functionality and offers a holistic interface (parameters, services, current status). Examples for such nodes are
the stereo matching node or the visual odometry node.

8.2.1 General API structure

The general entry point to the rc_visard’s API is http://<rcvisard>/api/, where <rcvisard> is either the
device’s IP address or its host name as known by the respective DHCP server, as explained in network configura-
tion (Section 4.3). Accessing this entry point with a web browser lets the user explore and test the full API during
run-time using the Swagger UI (Section 8.2.4).

For actual HTTP requests, the current API version is appended to the entry point of the API, i.e., http://
<rcvisard>/api/v1. All data sent to and received by the REST-API follows the JavaScript Object Notation
(JSON). The API is designed to let the user create, retrieve, modify, and delete so-called resources as listed in
Available resources and requests (Section 8.2.2) using the HTTP requests below.

Request type Description
GET Access one or more resources and

return the result as JSON.
PUT Modify a resource and return the

modified resource as JSON.
DELETE Delete a resource.
POST Upload file (e.g., license or

firmware image).

Depending on the type and the specific request itself, arguments to HTTP requests can be transmitted as part of the
path (URI) to the resource, as query string, as form data, or in the body of the request. The following examples
use the command line tool curl, which is available for various operating systems. See https://curl.haxx.se.

• Get a node’s current status; its name is encoded in the path (URI)

curl -X GET 'http://<rcvisard>/api/v1/nodes/rc_stereomatching'

• Get values of some of a node’s parameters using a query string

curl -X GET 'http://<rcvisard>/api/v1/nodes/rc_stereomatching/parameters?name=minconf&
→˓name=maxdepth'

• Configure a new datastream; the destination parameter is transmitted as form data

curl -X PUT --header 'Content-Type: application/x-www-form-urlencoded' -d 'destination=10.0.
→˓1.14%3A30000' 'http://<rcvisard>/api/v1/datastreams/pose'

• Set a node’s parameter as JSON-encoded text in the body of the request

curl -X PUT --header 'Content-Type: application/json' -d '[{"name": "mindepth", "value": 0.
→˓1}]' 'http://<rcvisard>/api/v1/nodes/rc_stereomatching/parameters'

As for the responses to such requests, some common return codes for the rc_visard’s API are:

8.2. REST-API interface 89

https://curl.haxx.se

Status Code Description
200 OK The request was successful; the re-

source is returned as JSON.
400 Bad Request A required attribute or argument of

the API request is missing or in-
valid.

404 Not Found A resource could not be accessed;
e.g., an ID for a resource could not
be found.

403 Forbidden Access is (temporarily) forbidden;
e.g., some parameters are locked
while a GigE Vision application is
connected.

429 Too many requests Rate limited due to excessive re-
quest frequency.

The following listing shows a sample response to a successful request that accesses information about the
rc_stereomatching node’s minconf parameter:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 157

{
"name": "minconf",
"min": 0,
"default": 0,
"max": 1,
"value": 0,
"type": "float64",
"description": "Minimum confidence"

}

Note: The actual behavior, allowed requests, and specific return codes depend heavily on the specific resource,
context, and action. Please refer to the rc_visard’s available resources (Section 8.2.2) and to each software
component’s (Section 6) parameters and services.

8.2.2 Available resources and requests

The available REST-API resources are structured into the following parts:

• /nodes: Access the rc_visard’s software components (Section 6) with their run-time status, parameters,
and offered services.

• /datastreams: Access and manage data streams of the rc_visard’s The rc_dynamics interface (Section
8.3).

• /logs: Access the log files on the rc_visard.

• /system: Access the system state and manage licenses as well as firmware updates.

Nodes, parameters, and services

Nodes represent the rc_visard’s software components (Section 6), each bundling a certain algorithmic functional-
ity. All available REST-API nodes can be listed with their service calls and parameters using

curl -X GET http://<rcvisard>/api/v1/nodes

8.2. REST-API interface 90

Information about a specific node (e.g., rc_stereocamera) can be retrieved using

curl -X GET http://<rcvisard>/api/v1/nodes/rc_stereocamera

Status: During run-time, each node offers information about its current status. This includes not only the current
processing status of the component (e.g., running or stale), but most nodes also offer run-time statistics
or read-only parameters, so-called status values. As an example, the rc_stereocamera values can be
retrieved using

curl -X GET http://<rcvisard>/api/v1/nodes/rc_stereocamera/status

Note: The returned status values are specific to individual nodes and are documented in the respective
software component (Section 6).

Note: The status values are only reported when the respective node is in the running state.

Parameters: Most nodes expose parameters via the rc_visard’s REST-API to allow their run-time behaviors to
be changed according to application context or requirements. The REST-API permits to read and write a
parameter’s value, but also provides further information such as minimum, maximum, and default values.

As an example, the rc_stereomatching parameters can be retrieved using

curl -X GET http://<rcvisard>/api/v1/nodes/rc_stereomatching/parameters

Its median parameter could be set to 3 using

curl -X PUT --header 'Content-Type: application/json' -d '{ "value": 3 }' http://<rcvisard>/
→˓api/v1/nodes/rc_stereomatching/parameters/median

Note: Run-time parameters are specific to individual nodes and are documented in the respective soft-
ware component (Section 6).

Note: Most of the parameters that nodes offer via the REST-API can be explored and tested via the
rc_visard’s user-friendly Web GUI (Section 4.5).

Note: Some parameters exposed via the rc_visard’s REST-API are also available from the GigE Vision
2.0/GenICam image interface (Section 8.1). Please note that setting those parameters via the REST-API
is prohibited if a GenICam client is connected.

In addition, each node that offers run-time parameters also features services to save, i.e., persist, the current
parameter setting, or to restore the default values for all of its parameters.

Services: Some nodes also offer services that can be called via REST-API, e.g., to save and restore parameters as
discussed above, or to start and stop nodes. As an example, the services of pose estimation (see Stereo INS,
Section 6.5), could be listed using

curl -X GET http://<rcvisard>/api/v1/nodes/rc_stereo_ins/services

A node’s service is called by issuing a PUT request for the respective resource and providing the service-
specific arguments (see the "args" field of the Service data model, Section 8.2.3). As an example, egomo-
tion estimation can be switched on by:

curl -X PUT --header 'Content-Type: application/json' -d '{ "args": {} }' http://<rcvisard>
→˓/api/v1/nodes/rc_dynamics/services/start

Note: The services and corresponding argument data models are specific to individual nodes and are
documented in the respective software component (Section 6).

8.2. REST-API interface 91

The following list includes all REST-API requests regarding the node’s status, parameters, and services calls:

GET /nodes
Get list of all available nodes.

Template request

GET /api/v1/nodes HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "rc_stereocalib",
"parameters": [
"grid_width",
"grid_height",
"snap"

],
"services": [
"save_parameters",
"reset_defaults",
"change_state"

],
"status": "stale"

},
{

"name": "rc_stereocamera",
"parameters": [
"fps",
"exp_auto",
"exp_value",
"exp_max"

],
"services": [
"save_parameters",
"reset_defaults"

],
"status": "running"

},
{

"name": "rc_hand_eye_calibration",
"parameters": [
"grid_width",
"grid_height",
"robot_mounted"

],
"services": [
"save_parameters",
"reset_defaults",
"set_pose",
"reset",
"save",
"calibrate",
"get_calibration"

],
"status": "stale"

},
{

"name": "rc_stereo_ins",

8.2. REST-API interface 92

"parameters": [],
"services": [],
"status": "stale"

},
{

"name": "rc_stereomatching",
"parameters": [
"force_on",
"quality",
"disprange",
"seg",
"median",
"fill",
"minconf",
"mindepth",
"maxdepth",
"maxdeptherr"

],
"services": [

"save_parameters",
"reset_defaults"

],
"status": "running"

},
{

"name": "rc_stereovisodo",
"parameters": [
"disprange",
"nkey",
"ncorner",
"nfeature"

],
"services": [

"save_parameters",
"reset_defaults"

],
"status": "stale"

}
]

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns array of NodeInfo)

Referenced Data Models

• NodeInfo (Section 8.2.3)

GET /nodes/{node}
Get info on a single node.

Template request

GET /api/v1/nodes/<node> HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

8.2. REST-API interface 93

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

{
"name": "rc_stereocamera",
"parameters": [

"fps",
"exp_auto",
"exp_value",
"exp_max"

],
"services": [
"save_parameters",
"reset_defaults"

],
"status": "running"

}

Parameters

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns NodeInfo)

• 404 Not Found – node not found

Referenced Data Models

• NodeInfo (Section 8.2.3)

GET /nodes/{node}/parameters
Get parameters of a node.

Template request

GET /api/v1/nodes/<node>/parameters?name=<name> HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 25

},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",
"type": "bool",
"value": true

8.2. REST-API interface 94

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

},
{

"default": 0.007,
"description": "Maximum exposure time in s if exp_auto is true",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_max",
"type": "float64",
"value": 0.007

}
]

Parameters

• node (string) – name of the node (required)

Query Parameters

• name (string) – limit result to parameters with name (optional)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns array of Parameter)

• 404 Not Found – node not found

Referenced Data Models

• Parameter (Section 8.2.3)

PUT /nodes/{node}/parameters
Update multiple parameters.

Template request

PUT /api/v1/nodes/<node>/parameters HTTP/1.1
Host: <rcvisard>
Accept: application/json

[
{

"name": "string",
"value": {}

}
]

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

},
{

8.2. REST-API interface 95

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",
"type": "bool",
"value": false

},
{

"default": 0.005,
"description": "Manual exposure time in s if exp_auto is false",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_value",
"type": "float64",
"value": 0.005

}
]

Parameters

• node (string) – name of the node (required)

Request JSON Array of Objects

• parameters (Parameter) – array of parameters (required)

Request Headers

• Accept – application/json

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns array of Parameter)

• 404 Not Found – node not found

• 403 Forbidden – Parameter update forbidden, e.g. because they are locked by a running
GigE Vision application or there is no valid license for this component.

Referenced Data Models

• Parameter (Section 8.2.3)

GET /nodes/{node}/parameters/{param}
Get a specific parameter of a node.

Template request

GET /api/v1/nodes/<node>/parameters/<param> HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": "H",
"description": "Quality, i.e. H, M or L",
"max": "",
"min": "",
"name": "quality",

8.2. REST-API interface 96

http://tools.ietf.org/html/rfc7231#section-5.3.2
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

"type": "string",
"value": "H"

}

Parameters

• node (string) – name of the node (required)

• param (string) – name of the parameter (required)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns Parameter)

• 404 Not Found – node or parameter not found

Referenced Data Models

• Parameter (Section 8.2.3)

PUT /nodes/{node}/parameters/{param}
Update a specific parameter of a node.

Template request

PUT /api/v1/nodes/<node>/parameters/<param> HTTP/1.1
Host: <rcvisard>
Accept: application/json

{
"name": "string",
"value": {}

}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": "H",
"description": "Quality, i.e. H, M or L",
"max": "",
"min": "",
"name": "quality",
"type": "string",
"value": "M"

}

Parameters

• node (string) – name of the node (required)

• param (string) – name of the parameter (required)

Request JSON Object

• parameter (Parameter) – parameter to be updated as JSON object (required)

Request Headers

• Accept – application/json

8.2. REST-API interface 97

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://tools.ietf.org/html/rfc7231#section-5.3.2

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns Parameter)

• 404 Not Found – node or parameter not found

• 403 Forbidden – Parameter update forbidden, e.g. because they are locked by a running
GigE Vision application or there is no valid license for this component.

Referenced Data Models

• Parameter (Section 8.2.3)

GET /nodes/{node}/services
Get descriptions of all services a node offers.

Template request

GET /api/v1/nodes/<node>/services HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"args": {},
"description": "Restarts the component.",
"name": "restart",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Starts the component.",
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Stops the component.",
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

]

Parameters

• node (string) – name of the node (required)

Response Headers

8.2. REST-API interface 98

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns array of Service)

• 404 Not Found – node not found

Referenced Data Models

• Service (Section 8.2.3)

GET /nodes/{node}/services/{service}
Get description of a node’s specific service.

Template request

GET /api/v1/nodes/<node>/services/<service> HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "int32"

},
"description": "Save a pose (grid or gripper) for later calibration.",
"name": "set_pose",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

Parameters

• node (string) – name of the node (required)

• service (string) – name of the service (required)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns Service)

• 404 Not Found – node or service not found

8.2. REST-API interface 99

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Referenced Data Models

• Service (Section 8.2.3)

PUT /nodes/{node}/services/{service}
Call a service of a node. The required args and resulting response depend on the specific node and service.

Template request

PUT /api/v1/nodes/<node>/services/<service> HTTP/1.1
Host: <rcvisard>
Accept: application/json

{
"args": {}

}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "set_pose",
"response": {
"message": "Grid detected, pose stored.",
"status": 1,
"success": true

}
}

Parameters

• node (string) – name of the node (required)

• service (string) – name of the service (required)

Request JSON Object

• service args (Service) – example args (required)

Request Headers

• Accept – application/json

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns Service)

• 404 Not Found – node or service not found

• 403 Forbidden – Service call forbidden, e.g. because there is no valid license for this
component.

Referenced Data Models

• Service (Section 8.2.3)

GET /nodes/{node}/status
Get status of a node.

Template request

8.2. REST-API interface 100

http://tools.ietf.org/html/rfc7231#section-5.3.2
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

GET /api/v1/nodes/<node>/status HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "running",
"timestamp": 1503075030.2335997,
"values": {
"baseline": "0.0650542",
"color": "0",
"exp": "0.00426667",
"focal": "0.844893",
"fps": "25.1352",
"gain": "12.0412",
"height": "960",
"temp_left": "39.6",
"temp_right": "38.2",
"time": "0.00406513",
"width": "1280"

}
}

Parameters

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns NodeStatus)

• 404 Not Found – node not found

Referenced Data Models

• NodeStatus (Section 8.2.3)

Datastreams

The following resources and requests allow access to and configuration of the The rc_dynamics interface data
streams (Section 8.3). These REST-API requests offer

• showing available and currently running data streams, e.g.,

curl -X GET http://<rcvisard>/api/v1/datastreams

• starting a data stream to a destination, e.g.,

curl -X PUT --header 'Content-Type: application/x-www-form-urlencoded' -d 'destination=
→˓<target-ip>:<target-port>' http://<rcvisard>/api/v1/datastreams/pose

• and stopping data streams, e.g.,

curl -X DELETE http://<rcvisard>/api/v1/datastreams/pose?destination=<target-ip>:<target-
→˓port>

The following list includes all REST-API requests associated with data streams:

8.2. REST-API interface 101

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

GET /datastreams
Get list of available data streams.

Template request

GET /api/v1/datastreams HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"description": "Pose of left camera at VisualOdometry rate (~10Hz)",
"destinations": [

"192.168.1.13:30000"
],
"name": "pose",
"protobuf": "Frame",
"protocol": "UDP"

},
{

"description": "Pose of left camera (RealTime 200Hz)",
"destinations": [
"192.168.1.100:20000",
"192.168.1.42:45000"

],
"name": "pose_rt",
"protobuf": "Frame",
"protocol": "UDP"

},
{

"description": "Raw IMU (InertialMeasurementUnit) values (RealTime 200Hz)",
"destinations": [],
"name": "imu",
"protobuf": "Imu",
"protocol": "UDP"

},
{

"description": "Dynamics of sensor (pose, velocity, acceleration) (RealTime 200Hz)",
"destinations": [
"192.168.1.100:20001"

],
"name": "dynamics",
"protobuf": "Dynamics",
"protocol": "UDP"

}
]

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns array of Stream)

Referenced Data Models

• Stream (Section 8.2.3)

GET /datastreams/{stream}
Get datastream configuration.

8.2. REST-API interface 102

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Template request

GET /api/v1/datastreams/<stream> HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"description": "Pose of left camera at VisualOdometry rate (~10Hz)",
"destinations": [

"192.168.1.13:30000"
],
"name": "pose",
"protobuf": "Frame",
"protocol": "UDP"

}

Parameters

• stream (string) – name of the stream (required)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns Stream)

• 404 Not Found – datastream not found

Referenced Data Models

• Stream (Section 8.2.3)

PUT /datastreams/{stream}
Update a datastream configuration.

Template request

PUT /api/v1/datastreams/<stream> HTTP/1.1
Host: <rcvisard>
Accept: application/x-www-form-urlencoded

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"description": "Pose of left camera at VisualOdometry rate (~10Hz)",
"destinations": [

"192.168.1.13:30000",
"192.168.1.25:40000"

],
"name": "pose",
"protobuf": "Frame",
"protocol": "UDP"

}

Parameters

8.2. REST-API interface 103

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

• stream (string) – name of the stream (required)

Form Parameters

• destination – destination (“IP:port”) to add (required)

Request Headers

• Accept – application/x-www-form-urlencoded

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns Stream)

• 404 Not Found – datastream not found

Referenced Data Models

• Stream (Section 8.2.3)

DELETE /datastreams/{stream}
Delete a destination from the datastream configuration.

Template request

DELETE /api/v1/datastreams/<stream>?destination=<destination> HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"description": "Pose of left camera at VisualOdometry rate (~10Hz)",
"destinations": [],
"name": "pose",
"protobuf": "Frame",
"protocol": "UDP"

}

Parameters

• stream (string) – name of the stream (required)

Query Parameters

• destination (string) – destination IP:port to delete, if not specified all destinations
are deleted (optional)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns Stream)

• 404 Not Found – datastream not found

Referenced Data Models

• Stream (Section 8.2.3)

8.2. REST-API interface 104

http://tools.ietf.org/html/rfc7231#section-5.3.2
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

System and logs

The following resources and requests expose the rc_visard’s system-level API. They enable

• access to log files (system-wide or component-specific)

• access to information about the device and run-time statistics such as date, MAC address, clock-time syn-
chronization status, and available resources;

• management of installed software licenses; and

• the rc_visard to be updated with a new firmware image.

GET /logs
Get list of available log files.

Template request

GET /api/v1/logs HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"date": 1503060035.0625782,
"name": "rcsense-api.log",
"size": 730

},
{

"date": 1503060035.741574,
"name": "stereo.log",
"size": 39024

},
{

"date": 1503060044.0475223,
"name": "camera.log",
"size": 1091

},
{

"date": 1503060035.2115774,
"name": "dynamics.log"

}
]

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns array of LogInfo)

Referenced Data Models

• LogInfo (Section 8.2.3)

GET /logs/{log}
Get a log file. Content type of response depends on parameter ‘format’.

Template request

8.2. REST-API interface 105

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

GET /api/v1/logs/<log>?format=<format>&limit=<limit> HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"date": 1503060035.2115774,
"log": [

{
"component": "rc_stereo_ins",
"level": "INFO",
"message": "Running rc_stereo_ins version 2.4.0",
"timestamp": 1503060034.083

},
{

"component": "rc_stereo_ins",
"level": "INFO",
"message": "Starting up communication interfaces",
"timestamp": 1503060034.085

},
{

"component": "rc_stereo_ins",
"level": "INFO",
"message": "Autostart disabled",
"timestamp": 1503060034.098

},
{

"component": "rc_stereo_ins",
"level": "INFO",
"message": "Initializing realtime communication",
"timestamp": 1503060034.209

},
{

"component": "rc_stereo_ins",
"level": "INFO",
"message": "Startet state machine in state IDLE",
"timestamp": 1503060034.383

},
{

"component": "rc_stereovisodo",
"level": "INFO",
"message": "Init stereovisodo ...",
"timestamp": 1503060034.814

},
{

"component": "rc_stereovisodo",
"level": "INFO",
"message": "rc_stereovisodo: Using standard VO",
"timestamp": 1503060034.913

},
{

"component": "rc_stereovisodo",
"level": "INFO",
"message": "rc_stereovisodo: Playback mode: false",
"timestamp": 1503060035.132

},
{

"component": "rc_stereovisodo",
"level": "INFO",
"message": "rc_stereovisodo: Ready",

8.2. REST-API interface 106

"timestamp": 1503060035.212
}

],
"name": "dynamics.log",
"size": 695

}

Parameters

• log (string) – name of the log file (required)

Query Parameters

• format (string) – return log as JSON or raw (one of json, raw; default: json) (op-
tional)

• limit (integer) – limit to last x lines in JSON format (default: 100) (optional)

Response Headers

• Content-Type – text/plain application/json

Status Codes

• 200 OK – successful operation (returns Log)

• 404 Not Found – log not found

Referenced Data Models

• Log (Section 8.2.3)

GET /system
Get system information on sensor.

Template request

GET /api/v1/system HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"firmware": {

"active_image": {
"image_version": "rc_visard_v1.1.0"

},
"fallback_booted": true,
"inactive_image": {

"image_version": "rc_visard_v1.0.0"
},
"next_boot_image": "active_image"

},
"hostname": "rc-visard-02873515",
"link_speed": 1000,
"mac": "00:14:2D:2B:D8:AB",
"ntp_status": {

"accuracy": "48 ms",
"synchronized": true

},
"ptp_status": {

"master_ip": "",
"offset": 0,

8.2. REST-API interface 107

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

"offset_dev": 0,
"offset_mean": 0,
"state": "off"

},
"ready": true,
"serial": "02873515",
"time": 1504080462.641875,
"uptime": 65457.42

}

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns SysInfo)

Referenced Data Models

• SysInfo (Section 8.2.3)

GET /system/license
Get information about licenses installed on sensor.

Template request

GET /api/v1/system/license HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"components": {

"calibration": true,
"fusion": true,
"hand_eye_calibration": true,
"rectification": true,
"self_calibration": true,
"slam": false,
"stereo": true,
"svo": true

},
"valid": true

}

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns LicenseInfo)

Referenced Data Models

• LicenseInfo (Section 8.2.3)

POST /system/license
Update license on sensor with a license file.

Template request

8.2. REST-API interface 108

http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

POST /api/v1/system/license HTTP/1.1
Host: <rcvisard>
Accept: multipart/form-data

Form Parameters

• file – license file (required)

Request Headers

• Accept – multipart/form-data

Status Codes

• 200 OK – successful operation

• 400 Bad Request – not a valid license

PUT /system/reboot
Reboot the sensor.

Template request

PUT /api/v1/system/reboot HTTP/1.1
Host: <rcvisard>

Status Codes

• 200 OK – successful operation

GET /system/rollback
Get information about currently active and inactive firmware/system images on sensor.

Template request

GET /api/v1/system/rollback HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"active_image": {
"image_version": "rc_visard_v1.1.0"

},
"fallback_booted": false,
"inactive_image": {

"image_version": "rc_visard_v1.0.0"
},
"next_boot_image": "active_image"

}

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns FirmwareInfo)

Referenced Data Models

• FirmwareInfo (Section 8.2.3)

8.2. REST-API interface 109

http://tools.ietf.org/html/rfc7231#section-5.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

PUT /system/rollback
Rollback to previous firmware version (inactive system image).

Template request

PUT /api/v1/system/rollback HTTP/1.1
Host: <rcvisard>

Status Codes

• 200 OK – successful operation

• 500 Internal Server Error – internal error

• 400 Bad Request – already set to use inactive partition on next boot

GET /system/update
Get information about currently active and inactive firmware/system images on sensor.

Template request

GET /api/v1/system/update HTTP/1.1
Host: <rcvisard>

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"active_image": {
"image_version": "rc_visard_v1.1.0"

},
"fallback_booted": false,
"inactive_image": {

"image_version": "rc_visard_v1.0.0"
},
"next_boot_image": "active_image"

}

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation (returns FirmwareInfo)

Referenced Data Models

• FirmwareInfo (Section 8.2.3)

POST /system/update
Update firmware/system image with a mender artifact. Reboot is required afterwards in order to activate
updated firmware version.

Template request

POST /api/v1/system/update HTTP/1.1
Host: <rcvisard>
Accept: multipart/form-data

Form Parameters

• file – mender artifact file (required)

8.2. REST-API interface 110

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Request Headers

• Accept – multipart/form-data

Status Codes

• 200 OK – successful operation

• 400 Bad Request – client error, e.g. no valid mender artifact

8.2.3 Data type definitions

The REST-API defines the following data models, which are used to access or modify the available resources
(Section 8.2.2) either as required attributes/parameters of the requests or as return types.

FirmwareInfo: Information about currently active and inactive firmware images, and what image is/will be
booted.

An object of type FirmwareInfo has the following properties:

• active_image (ImageInfo) - see description of ImageInfo

• fallback_booted (boolean) - true if desired image could not be booted and fallback boot to the previous
image occured

• inactive_image (ImageInfo) - see description of ImageInfo

• next_boot_image (string) - firmware image that will be booted next time (one of active_image,
inactive_image)

Template object

{
"active_image": {
"image_version": "string"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "string"

},
"next_boot_image": "string"

}

FirmwareInfo objects are nested in SysInfo, and are used in the following requests:

• GET /system/rollback

• GET /system/update

ImageInfo: Information about specific firmware image.

An object of type ImageInfo has the following properties:

• image_version (string) - image version

Template object

{
"image_version": "string"

}

ImageInfo objects are nested in FirmwareInfo.

LicenseComponents: List of the licensing status of the individual software components. The respective flag is
true if the component is unlocked with the currently applied software license.

An object of type LicenseComponents has the following properties:

• calibration (boolean) - camera calibration component

8.2. REST-API interface 111

http://tools.ietf.org/html/rfc7231#section-5.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

• fusion (boolean) - stereo ins/fusion components

• hand_eye_calibration (boolean) - hand-eye calibration component

• rectification (boolean) - image rectification component

• self_calibration (boolean) - camera self-calibration component

• slam (boolean) - SLAM component

• stereo (boolean) - stereo matching component

• svo (boolean) - visual odometry component

Template object

{
"calibration": false,
"fusion": false,
"hand_eye_calibration": false,
"rectification": false,
"self_calibration": false,
"slam": false,
"stereo": false,
"svo": false

}

LicenseComponents objects are nested in LicenseInfo.

LicenseInfo: Information about the currently applied software license on the sensor.

An object of type LicenseInfo has the following properties:

• components (LicenseComponents) - see description of LicenseComponents

• valid (boolean) - indicates whether the license is valid or not

Template object

{
"components": {

"calibration": false,
"fusion": false,
"hand_eye_calibration": false,
"rectification": false,
"self_calibration": false,
"slam": false,
"stereo": false,
"svo": false

},
"valid": false

}

LicenseInfo objects are used in the following requests:

• GET /system/license

Log: Content of a specific log file represented in JSON format.

An object of type Log has the following properties:

• date (float) - UNIX time when log was last modified

• log (array of LogEntry) - the actual log entries

• name (string) - mame of log file

• size (integer) - size of log file in bytes

Template object

8.2. REST-API interface 112

{
"date": 0,
"log": [

{
"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

},
{

"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}
],
"name": "string",
"size": 0

}

Log objects are used in the following requests:

• GET /logs/{log}

LogEntry: Representation of a single log entry in a log file.

An object of type LogEntry has the following properties:

• component (string) - component name that created this entry

• level (string) - log level (one of DEBUG, INFO, WARN, ERROR, FATAL)

• message (string) - actual log message

• timestamp (float) - Unix time of log entry

Template object

{
"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}

LogEntry objects are nested in Log.

LogInfo: Information about a specific log file.

An object of type LogInfo has the following properties:

• date (float) - UNIX time when log was last modified

• name (string) - name of log file

• size (integer) - size of log file in bytes

Template object

{
"date": 0,
"name": "string",
"size": 0

}

LogInfo objects are used in the following requests:

• GET /logs

8.2. REST-API interface 113

NodeInfo: Description of a computational node running on sensor.

An object of type NodeInfo has the following properties:

• name (string) - name of the node

• parameters (array of string) - list of the node’s run-time parameters

• services (array of string) - list of the services this node offers

• status (string) - status of the node (one of unknown, down, stale, running)

Template object

{
"name": "string",
"parameters": [

"string",
"string"

],
"services": [

"string",
"string"

],
"status": "string"

}

NodeInfo objects are used in the following requests:

• GET /nodes

• GET /nodes/{node}

NodeStatus: Detailed current status of the node including run-time statistics.

An object of type NodeStatus has the following properties:

• status (string) - status of the node (one of unknown, down, stale, running)

• timestamp (float) - Unix time when values were last updated

• values (object) - dictionary with current status/statistics of the node

Template object

{
"status": "string",
"timestamp": 0,
"values": {}

}

NodeStatus objects are used in the following requests:

• GET /nodes/{node}/status

NtpStatus: Status of the NTP time sync.

An object of type NtpStatus has the following properties:

• accuracy (string) - time sync accuracy reported by NTP

• synchronized (boolean) - synchronized with NTP server

Template object

{
"accuracy": "string",
"synchronized": false

}

8.2. REST-API interface 114

NtpStatus objects are nested in SysInfo.

Parameter: Representation of a node’s run-time parameter. The parameter’s ‘value’ type (and hence the types of
the ‘min’, ‘max’ and ‘default’ fields) can be inferred from the ‘type’ field and might be one of the built-in
primitive data types.

An object of type Parameter has the following properties:

• default (type not defined) - the parameter’s default value

• description (string) - description of the parameter

• max (type not defined) - maximum value this parameter can be assigned to

• min (type not defined) - minimum value this parameter can be assigned to

• name (string) - name of the parameter

• type (string) - the parameter’s primitive type represented as string (one of bool, int8, uint8, int16,
uint16, int32, uint32, int64, uint64, float32, float64, string)

• value (type not defined) - the parameter’s current value

Template object

{
"default": {},
"description": "string",
"max": {},
"min": {},
"name": "string",
"type": "string",
"value": {}

}

Parameter objects are used in the following requests:

• GET /nodes/{node}/parameters

• PUT /nodes/{node}/parameters

• GET /nodes/{node}/parameters/{param}

• PUT /nodes/{node}/parameters/{param}

PtpStatus: Status of the IEEE1588 (PTP) time sync.

An object of type PtpStatus has the following properties:

• master_ip (string) - IP of the master clock

• offset (float) - time offset in seconds to the master

• offset_dev (float) - standard deviation of time offset in seconds to the master

• offset_mean (float) - mean time offset in seconds to the master

• state (string) - state of PTP (one of off, unknown, INITIALIZING, FAULTY, DISABLED, LISTENING,
PASSIVE, UNCALIBRATED, SLAVE)

Template object

{
"master_ip": "string",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "string"

}

PtpStatus objects are nested in SysInfo.

8.2. REST-API interface 115

Service: Representation of a service that a node offers.

An object of type Service has the following properties:

• args (ServiceArgs) - see description of ServiceArgs

• description (string) - short description of this service

• name (string) - name of the service

• response (ServiceResponse) - see description of ServiceResponse

Template object

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Service objects are used in the following requests:

• GET /nodes/{node}/services

• GET /nodes/{node}/services/{service}

• PUT /nodes/{node}/services/{service}

ServiceArgs: Arguments required to call a service with. The general representation of these arguments is a
(nested) dictionary. The specific content of this dictionary depends on the respective node and service call.

ServiceArgs objects are nested in Service.

ServiceResponse: The response returned by the service call. The general representation of this response is a
(nested) dictionary. The specific content of this dictionary depends on the respective node and service call.

ServiceResponse objects are nested in Service.

Stream: Represention of a data stream offered by the rc_dynamics interface.

An object of type Stream has the following properties:

• destinations (array of StreamDestination) - list of destinations this data is currently streamed to

• name (string) - the data stream’s name specifying which rc_dynamics data is streamed

• type (StreamType) - see description of StreamType

Template object

{
"destinations": [

"string",
"string"

],
"name": "string",
"type": {

"protobuf": "string",
"protocol": "string"

}
}

Stream objects are used in the following requests:

• GET /datastreams

• GET /datastreams/{stream}

• PUT /datastreams/{stream}

8.2. REST-API interface 116

• DELETE /datastreams/{stream}

StreamDestination: A destination of an rc_dynamics data stream represented as string such as ‘IP:port’

An object of type StreamDestination is of primitive type string.

StreamDestination objects are nested in Stream.

StreamType: Description of a data stream’s protocol.

An object of type StreamType has the following properties:

• protobuf (string) - type of data-serialization, i.e. name of protobuf message definition

• protocol (string) - network protocol of the stream [UDP]

Template object

{
"protobuf": "string",
"protocol": "string"

}

StreamType objects are nested in Stream.

SysInfo: System information about the sensor.

An object of type SysInfo has the following properties:

• firmware (FirmwareInfo) - see description of FirmwareInfo

• hostname (string) - Hostname

• link_speed (integer) - Ethernet link speed in Mbps

• mac (string) - MAC address

• ntp_status (NtpStatus) - see description of NtpStatus

• ptp_status (PtpStatus) - see description of PtpStatus

• ready (boolean) - system is fully booted and ready

• serial (string) - sensor serial number

• time (float) - system time as Unix timestamp

• uptime (float) - system uptime in seconds

Template object

{
"firmware": {

"active_image": {
"image_version": "string"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "string"

},
"next_boot_image": "string"

},
"hostname": "string",
"link_speed": 0,
"mac": "string",
"ntp_status": {

"accuracy": "string",
"synchronized": false

},
"ptp_status": {

"master_ip": "string",

8.2. REST-API interface 117

"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "string"

},
"ready": false,
"serial": "string",
"time": 0,
"uptime": 0

}

SysInfo objects are used in the following requests:

• GET /system

8.2.4 Swagger UI

The rc_visard’s Swagger UI allows developers to easily visualize and interact with the REST-API, e.g., for devel-
opment and testing. Accessing http://<rcvisard>/api/ or http://<rcvisard>/api/swagger (the former
will automatically be redirected to the latter) opens a visualization of the rc_visard’s general API structure includ-
ing all available resources and requests (Section 8.2.2) and offers a simple user interface for exploring all of its
features.

Note: Users must be aware that, although the rc_visard’s Swagger UI is designed to explore and test the REST-
API, it is a fully functional interface. That is, any issued requests are actually processed and particularly PUT,
POST, and DELETE requests might change the overall status and/or behavior of the device.

8.2. REST-API interface 118

https://swagger.io/

Fig. 8.1: Initial view of the rc_visard’s Swagger UI with its resources and requests grouped into nodes,
datastreams, logs, and system

Using this interface, available resources and requests can be explored by clicking on them to uncollapse or recol-
lapse them. The following figure shows an example of how to get a node’s current status by filling in the necessary
parameter (node name) and clicking the Try it out! button. This action results in the Swagger UI showing, amongst
others, the actual curl command that was executed when issuing the request as well as the response body showing
the current status of the requested node in a JSON-formatted string.

8.2. REST-API interface 119

Fig. 8.2: Result of requesting the rc_stereomatching node’s status

Some actions, such as setting parameters or calling services, require more complex parameters to an HTTP request.
The Swagger UI allows developers to explore the attributes required for these actions during run-time, as shown
in the next example. In the figure below, the attributes required for the the rc_hand_eye_calibration node’s
set_pose service are explored by performing a GET request on this resource. The response features a full de-
scription of the service offered, including all required arguments with their names and types as a JSON-formatted
string.

8.2. REST-API interface 120

Fig. 8.3: The result of the GET request on the set_pose service shows the required arguments for this service call.

Users can easily use this preformatted JSON string as a template for the service arguments to actually call the
service:

8.2. REST-API interface 121

Fig. 8.4: Filling in the arguments of the set_pose service request

8.3 The rc_dynamics interface

The rc_dynamics interface offers continuous, real-time data-stream access to rc_visard’s several dynamic state
estimates (Section 6.3.2) as continuous, real-time data streams. It allows state estimates of all offered types to be
configured to be streamed to any host in the network. The Data-stream protocol (Section 8.3.3) used is agnostic
vis-à-vis operating system and programming language.

8.3.1 Starting/stopping dynamic-state estimation

The rc_visard’s dynamic-state estimates are only available if the respective component, i.e., the sensor dynamics
component (Section 6.3), is turned on. This can be done either in the Web GUI - a respective switch is offered in
the Dynamics tab - or via the REST-API by using the component’s service calls. A sample curl request to start
dynamic-state estimation would look like:

curl -X PUT --header 'Content-Type: application/json' -d '{}' 'http://<rcvisard>/api/v1/nodes/rc_

→˓dynamics/services/start'

Note: To save computational resources, it is recommended to stop dynamic-state estimation when not needed
any longer.

8.3.2 Configuring data streams

Availabe data streams, i.e., dynamic-state estimates, can be listed and configured by the rc_visard’s REST-
API (Section 8.2.2), e.g., a list of all available data streams can be requested with GET /datastreams. For a
detailed description of the following data streams, please refer to Available state estimates (Section 6.3.2).

8.3. The rc_dynamics interface 122

Table 8.2: Available data streams via the rc_dynamics interface
Name Protocol Protobuf Description
dynamics UDP Dynamics Dynamics of sensor (pose, velocity, acceleration) from INS or

SLAM (best effort depending on availability) at realtime
frequency (IMU rate)

dynamics_ins UDP Dynamics Dynamics of sensor (pose, velocity, acceleration) from stereo INS
at realtime frequency (IMU rate)

pose UDP Frame Pose of left camera from INS or SLAM (best effort depending on
availability) at maximum camera frequency (fps)

pose_rt UDP Frame Pose of left camera from INS or SLAM (best effort depending on
availability) at realtime frequency (IMU rate)

pose_ins UDP Frame Pose of left camera from stereo INS at maximum camera
frequency (fps)

pose_rt_ins UDP Frame Pose of left camera from stereo INS at realtime frequency (IMU
rate)

imu UDP Imu Raw IMU (Inertial Measurement Unit) values at realtime
frequency (IMU rate)

The general procedure for working with the rc_dynamics interface is the following:

1. Request a data stream via REST-API. The following sample curl command issues a PUT /
datastreams/{stream} request to initiate a stream of type pose_rt from the rc_visard to
client host 10.0.1.14 at port 30000:

curl -X PUT --header 'Content-Type: application/x-www-form-urlencoded' --header
→˓'Accept: application/json' -d 'destination=10.0.1.14:30000' 'http://<rcvisard>/api/v1/
→˓datastreams/pose_rt'

2. Receive and deserialize data. With a successful request, the stream is initiated and data of the specified
stream type is continuously sent to the client host. According to the Data-stream protocol (Section
8.3.3), the client needs to receive, deserialize and process the data.

3. Stop a requested data stream via REST-API. The following sample curl command issues a DELETE /
datastreams/{stream} request to delete, i.e., stop, the previously requested stream of type pose_rt
with destination 10.0.1.14:30000:

curl -X DELETE --header 'Accept: application/json' 'http://<rcvisard>/api/v1/
→˓datastreams/pose_rt?destination=10.0.1.14:30000'

To remove all destinations for a stream, simply omit the destination parameter.

Warning: Data streams can not be deleted automatically, i.e., the rc_visard keeps streaming data even if the
client-side is disconnected or has stopped consuming the sent datagrams. A maximum of 10 destinations per
stream are allowed. It is therefore strongly recommended to stop data streams via the REST-API when they
are or no longer used.

8.3.3 Data-stream protocol

Once a data stream is established, data is continuously sent to the specified client host and port (destination)
via the following protocol:

Network protocol: The only currently supported network protocol is UDP, i.e., data is sent as UDP datagrams.

Data serialization: The data being sent is serialized via Google protocol buffers. The following message type
definitions are used.

• The camera-pose streams and real-time camera-pose streams (Section 6.3.2) are serialized using the
Frame message type:

8.3. The rc_dynamics interface 123

https://developers.google.com/protocol-buffers/

message Frame
{
optional PoseStamped pose = 1;
optional string parent = 2; // Name of the parent frame
optional string name = 3; // Name of the frame

}

• The real-time dynamics stream (Section 6.3.2) is serialized using the Dynamics message type:

message Dynamics
{
optional Time timestamp = 1; // Time when the data was

→˓captured
optional Pose pose = 2;
optional string pose_frame = 3; // Name of the frame that

→˓the pose is given in
optional Vector3d linear_velocity = 4; // Linear velocity in m/s
optional string linear_velocity_frame = 5; // Name of the frame that

→˓the linear_velocity is given in
optional Vector3d angular_velocity = 6; // Angular velocity in rad/s
optional string angular_velocity_frame = 7; // Name of the frame that

→˓the angular_velocity is given in
optional Vector3d linear_acceleration = 8; // Gravity compensated

→˓linear acceleration in m/s2

optional string linear_acceleration_frame = 9; // Name of the frame that
→˓the acceleration is given in
repeated double covariance = 10 [packed=true]; // Row-major

→˓representation of the 15x15 covariance matrix
optional Frame cam2imu_transform = 11; // pose of the left camera

→˓wrt. the IMU frame
optional bool possible_jump = 12; // True if there possibly

→˓was a jump in the pose estimation
}

• The IMU stream (Section 6.3.2) is serialized using the Imu message type:

message Imu
{
optional Time timestamp = 1; // Time when the data was

→˓captured
optional Vector3d linear_acceleration = 2; // Linear acceleration in m/

→˓s2 measured by the IMU
optional Vector3d angular_velocity = 3; // Angular velocity in rad/

→˓s measured by the IMU
}

• The nested types PoseStamped, Pose, Time, Quaternion, and Vector3D are defined as follows:

message PoseStamped
{
optional Time timestamp = 1; // Time when the data was captured
optional Pose pose = 2;

}

message Pose
{
optional Vector3d position = 1; // Position in meters
optional Quaternion orientation = 2; // Orientation as unit quaternion
repeated double covariance = 3 [packed=true]; // Row-major

→˓representation of the 6x6 covariance matrix (x, y, z, rotation about X axis,
→˓rotation about Y axis, rotation about Z axis)
}

8.3. The rc_dynamics interface 124

message Time
{
/// \brief Seconds
optional int64 sec = 1;

/// \brief Nanoseconds
optional int32 nsec = 2;

}

message Quaternion
{
optional double x = 2;
optional double y = 3;
optional double z = 4;
optional double w = 5;

}

message Vector3d
{
optional double x = 1;
optional double y = 2;
optional double z = 3;

}

8.4 Time synchronization

The rc_visard provides timestamps with all images and messages. To compare these with the time on the appli-
cation host, the time needs to be properly synchronized. This can be done either via the Networt Time Protocol
(NTP), which is the default, or the Precision Time Protocol (PTP).

Note: The rc_visard does not have a backup battery for its real time clock and hence does not retain time
across power cycles. The system time starts in the year 2000 at power up and is then automatically set via NTP
if a server can be found.

The current system time as well as NTP and PTP status can be queried via REST API (Section 8.2) and seen on
the Web GUI’s (Section 4.5) System tab.

Note: Depending on the reachability of NTP servers or PTP masters it might take up to several minutes until
the time is synchronized.

8.4.1 NTP

The Network Time Protocol (NTP) is a TCP/IP protocol for synchronizing time over a network. A client periodi-
cally requests the current time from a server, and uses it to set and correct its own clock.

By default the rc_visard tries to reach NTP servers from the NTP Pool Project, which will work if the rc_visard
has access to the internet.

If the rc_visard is configured for DHCP (Section 4.3.1) (which is the default setting), it will also request NTP
servers from the DHCP server and try to use those.

8.4.2 PTP

The Precision Time Protocol (PTP, also known as IEEE1588) is a protocol which offers more precise and robust
clock synchronization than with NTP.

8.4. Time synchronization 125

The rc_visard can be configured to act as a PTP slave via the standard GigE Vision 2.0/GenICam interface (Section
8.1) using the GevIEEE1588 parameter.

At least one PTP master providing time has to be running in the network. On Linux the respective command for
starting a PTP master on ethernet port eth0 is, e.g., sudo ptpd --masteronly --foreground -i eth0.

While the rc_visard is synchronized with a PTP master (rc_visard in PTP status SLAVE), the NTP synchronization
is paused.

8.4. Time synchronization 126

9 Maintenance

Warning: The customer does not need to open the rc_visard’s housing to perform maintenance. Unauthorized
opening will void the warranty.

9.1 Lens cleaning

Glass lenses with antireflective coating are used to reduce glare. Please take special care when cleaning the lenses.
To clean them, use a soft lens-cleaning brush to remove dust or dirt particles. Then use a clean microfiber cloth
that is designed to clean lenses, and gently wipe the lens using a circular motion to avoid scratches that may
compromise the sensor’s performance. For stubborn dirt, high purity isopropanol or a lens cleaning solution
formulated for coated lenses (such as the Uvex Clear family of products) may be used.

9.2 Camera calibration

The cameras are calibrated during production. Under normal operation conditions, the calibration will be valid for
the life time of the sensor. High impact, such as occurring when dropping the rc_visard, can change the camera’s
parameters slightly. In this case, calibration can be verified and recalibration undertaken via the Web GUI (see
Camera calibration, Section 6.6).

9.3 Updating the firmware

Information about the current firmware image version can be found on the Web GUI’s (Section 4.5) System tab in
the System information row. It can also be accessed via the rc_visard’s REST-API interface (Section 8.2) using the
GET /system request. Users can use either the Web GUI or the REST-API to update the firmware.

Warning: After a firmware update, all of the software components’ configured parameters will be reset to
their defaults. Please make sure these settings are persisted on the application-side or client PC (e.g., using the
REST-API interface, Section 8.2) to request all parameters and store them prior to executing the update.

The following settings are excluded from this and will be persisted across a firmware update:

• the rc_visard’s network configuration including an optional static IP address and the user-specifed device
name,

• the latest result of the Hand-eye calibration (Section 6.7), i.e., recalibrating the rc_visard w.r.t. a robot
is not required, unless mounting has changed, and

• the latest result of the Camera calibration (Section 6.6), i.e., recalibration of the rc_visard’s stereo cam-
eras is not required.

Step 1: Download the newest firmware version. Firmware updates will be supplied from of a Mender artifact
file identified by its .mender suffix.

127

If a new firmware update is available for your rc_visard device, the respective file can be downloaded to a
local computer from http://www.roboception.com/download.

Step 2: Upload the update file. To update with the rc_visard’s REST-API, users may refer to the POST /
system/update request.

To update the firmware via the Web GUI, locate the Software Update row on the System tab and press the
Upload Update button (see Fig. 9.1). Select the desired update image file (file extension .mender) from the
local file system and open it to start the update.

Fig. 9.1: Web GUI System tab

Note: Depending on the network architecture and configuration the upload may take several minutes.
During the update via the Web GUI, a progress bar indicates the progress of the upload as shown in Fig.
9.2.

Fig. 9.2: Software update progress bar

Note: Depending on the web browser, the update progress status shown in Fig. 9.2 may indicate the
completion of the update too early. Please wait until the context window shown in Fig. 9.3 opens.
Expect an overall update time of at least five minutes.

Fig. 9.3: Software update rebooting screen

9.3. Updating the firmware 128

http://www.roboception.com/download

Warning: Do not close the web browser tab which contains the Web GUI or press the renew button on
this tab, because it will abort the update procedure. In that case, repeat the update procedure from the
beginning.

Step 3: Reboot the rc_visard. To apply a firmware update to the rc_visard device, a reboot is required after
having uploaded the new image version.

Note: The new image version is uploaded to the inactive partition of the rc_visard. Only after rebooting
will the inactive partition be activated, and the active partition will become inactive. If the updated
firmware image cannot be loaded, this partition of the rc_visard remains inactive and the previously
installed firmware version from the active partition will be used automatically.

As for the REST-API, the reboot can be performed by the PUT /system/reboot request.

After having uploaded the new firmware via the Web GUI, a context window is opened as shown in Fig. 9.3
offering to reboot the device immediately or to postpone it. To reboot the rc_visard at a later time, use the
Reboot button on the Web GUI’s System tab.

Step 4: Confirm the firmware update. After rebooting the rc_visard, please check the firmware image version
number of the currently active image to make sure that the updated image was successfully loaded. You can
do so either via the Web GUI’s System tab or via the REST-API’s GET /system/update request.

Please contact Roboception in case the firmware update could not be applied successfully.

9.4 Restoring the previous firmware version

After a successful firmware update, the previous firmware image is stored on the inactive partition of the rc_visard
and can be restored in case needed. This procedure is called a rollback.

Note: Using the latest firmware as provided by Roboception is strongly recommended. Hence, rollback func-
tionality should only be used in case of serious issues with the updated firmware version.

Rollback functionality is only accessible via the rc_visard’s REST-API interface (Section 8.2) using the PUT /
system/rollback request. It can be issued using any HTTP-compatible client or using a web browser as de-
scribed in Swagger UI (Section 8.2.4). Like the update process, the rollback requires a subsequent device reboot
to activate the restored firmware version.

Warning: Like during a firmware update, all software components’ parameters will be reset to their defaults.
Please make sure these settings are persisted on the application-side or client PC (e.g., using the REST-API
interface, Section 8.2) prior to executing the rollback.

9.5 Rebooting the rc_visard

An rc_visard reboot is necessary after updating the firmware or performing a software rollback. It can be issued
either programmatically, via the rc_visard’s REST-API interface (Section 8.2) using the PUT /system/reboot
request, or manually on the Web GUI’s (Section 4.5) System tab. The reboot is finished when the LED turns green
again.

9.6 Updating the software license

Licenses that are purchased from Roboception for enabling additional features can be installed via the Web GUI’s
(Section 4.5) System panel. The rc_visard has to be rebooted to apply the licenses.

9.4. Restoring the previous firmware version 129

9.7 Downloading log files

During operation, the rc_visard logs important information, warnings, and errors into files. If the rc_visard ex-
hibits unexpected or erroneous behavior, the log files can be used to trace its origin. Log messages can be viewed
and filtered using the Web GUI’s (Section 4.5) Logs tab. If contacting the support (Contact, Section 12), the log
files are very useful for tracking possible problems. To download them as a .tar.gz file, click on Download all logs
on the Web GUI’s Logs tab.

Besides the Web GUI, the logs are also accessible via the rc_visard’s REST-API interface (Section 8.2) using the
GET /logs and GET /logs/{log} requests.

9.7. Downloading log files 130

10 Accessories

10.1 Connectivity kit

Roboception offers an optional connectivity kit to aid customers with setting up the rc_visard. It consists of a:

• network cable with straight M12 plug to straight RJ45 connector in either 2 m or 5 m length;

• power adapter cable with straight M12 socket to DC barrel connector in 30 cm length;

• 24 V, 30 W desktop power supply.

Connecting the rc_visard to residential or office grid power requires a power supply that meets EN 55011
Class B emission standards. The E2CFS 30W 24V by EGSTON System Electronics Eggenburg GmbH (http:
//www.egston.com) contained in the connectivity kit is certified accordingly. However, it does not meet immunity
standards for industrial environments under EN 61000-6-2.

Power supply
24V 1.25A

M12 to RJ45 cable

DC barrel to
M12 adapter

Fig. 10.1: The optional connectivity kit’s components

10.2 Wiring

Cables are by default not provided with the rc_visard. It is the customer’s responsibility to obtain appropriate
parts. The following sections provide an overview of suggested components.

10.2.1 Ethernet connections

The rc_visard provides an industrial 8-pin A-coded M12 socket connector for Ethernet connectivity. Various
cabling solutions can be obtained directly from third party vendors.

CAT5 (1 Gbps) M12 plug to RJ45

• Straight M12 plug to straight RJ45 connector, 10 m length: Phoenix Contact NBC-MS/ 10,0-94B/R4AC
SCO, Art.-Nr.: 1407417

131

http://www.egston.com
http://www.egston.com

• Straight M12 plug to straight RJ45 connector, 10 m length: MURR Electronics Art.-Nr.: 7700-48521-
S4W1000

• Angled M12 plug to straight RJ45 connector, 10 m length: MURR Electronics Art.-Nr.: 7700-48551-
S4W1000

10.2.2 Power connections

An 8-pin A-coded M12 plug connector is provided for power and GPIO connectivity. Various cabling solutions
can be obtained from third party vendors. A selection of M12 to open ended cables is provided below. Cus-
tomers are required to provide power and GPIO connections to the cables according to the pinouts described in
Wiring (Section 3.5). The rc_visard’s housing must be connected to ground.

Sensor/Actor cable M12 socket to open end

• Straight M12 socket connector to open end, shielded, 10m length: Phoenix Contact SAC-8P-10,0-
PUR/M12FS SH, Art.Nr.: 1522891

• Angled M12 socket connector to open end, shielded 10m length: Phoenix Contact SAC-8P-10,0-
PUR/M12FR SH, Art.Nr.: 1522943

Sensor/Actor M12 socket for field termination

• Phoenix Contact SACC-M12FS-8CON-PG9-M, Art.Nr.:1513347

• TE Connectivity T4110011081-000 (metal housing)

• TE Connectivity T4110001081-000 (plastic housing)

10.2.3 Power supplies

The rc_visard is classified as an EN-55011 Class A industrial device. For connecting the sensor to residential grid
power, a power supply under EN 55011/55022 Class B has to be used.

It is the customer’s responsibility to obtain and install a suitable power supply satisfying EN 61000-6-2 for
permanent installation in industrial environments. One example that satisfies both EN 61000-6-2 and EN
55011/55022 Class B is the DIN-Rail mounted PULS MiniLine ML60.241 24V/DC 2.5 A by PULS GmbH
(http://www.pulspower.com). A certified electrician must perform installation.

Only one rc_visard shall be connected to a power supply at any time, and the total length of cables must be less
than 30 m.

10.3 Spare parts

No user-serviceable spare parts are currently available for rc_visard devices.

10.3. Spare parts 132

http://www.pulspower.com

11 Troubleshooting

11.1 LED colors

During the boot process, the LED will change color several times to indicate stages in the boot process:

Table 11.1: LED color codes
LED color Boot stage
white power supply OK
yellow normal boot process in progress
purple
blue
green boot complete, rc_visard ready

The LED will signal some warning or error states to support the user during troubleshooting.

Table 11.2: LED color trouble codes
LED color Warning or error state
off no power to the sensor
brief red flash every 5 seconds no network connectivity
red while sensor appears to function normally high-temperature warning (case has exceeded 60 °C)
red while case is below 60 °C Some process has terminated and failed to restart.

11.2 Hardware issues

LED does not illuminate

The rc_visard does not start up.

• Ensure that cables are connected and secured properly.

• Ensure that adequate DC voltage (18 V to 30 V) with correct polarity is applied to the power connector at
the pins labeled as Power and Ground as described in the device’s pin assignment specification (Section
3.5). Connecting the sensor to voltage outside of the specified range, to alternating current, with reversed
polarity, or to a supply with voltage spikes will lead to permanent hardware damage.

LED turns red while the sensor appears to function normally

This may indicate a high housing temperature. The sensor might be mounted in a position that obstructs free
airflow around the cooling fins.

• Clean cooling fins and housing.

• Ensure a minimum of 10 cm free space in all directions around cooling fins to provide adequate convective
cooling.

• Ensure that ambient temperature is within specified range.

133

The sensor may slow down processing when cooling is insufficient or the ambient temperature exceeds the speci-
fied range.

Reliability issues and/or mechanical damage

This may be an indication of ambient conditions (vibration, shock, resonance, and temperature) being outside of
specified range. Please refer to the specification of environmental conditions (Section 3.3).

• Operating the rc_visard outside of specified ambient conditions might lead to damage and will void the
warranty.

Electrical shock when touching the sensor

This indicates an electrical fault in sensor, cabling, or power supply or adjacent system.

• Immediately turn off power to the system, disconnect cables, and have a qualified electrician check the
setup.

• Ensure that the sensor housing is properly grounded; check for large ground loops.

11.3 Connectivity issues

LED briefly flashes red every 5 seconds

If the LED briefly flashes red every 5 seconds, then the rc_visard is not able to detect a network link.

• Check that the network cable is properly connected to the rc_visard and the network.

• If no problem is visible, then replace the Ethernet cable.

A GigE Vision client or rcdiscover-gui cannot detect the camera

• Check whether the rc_visard’s LED flashes briefly every 5 seconds (check the cable if it does).

• Ensure that the rc_visard is connected to the same subnet (the discovery mechanism uses broadcasts that
will not work across different subnets).

The Web GUI is inaccessible

• Ensure that the rc_visard is turned on and connected to the same subnet as the host computer.

• Check whether the rc_visard’s LED flashes briefly every 5 seconds (check the cable if it does).

• Check whether rcdiscover-gui detects the sensor. If it reports the rc_visard as unreachable, then the
rc_visard’s network configuration (Section 4.3) is wrong.

• If the rc_visard is reported as reachable, try double clicking the entry to open the Web GUI in a browser.

• If this does not work, try entering the rc_visard’s reported IP address directly in the browser as target
address.

Too many Web GUIs are open at the same time

The Web GUI consumes the rc_visard’s processing resources to compress images to be transmitted and for sta-
tistical output that is regularly polled by the browser. Leaving several instances of the Web GUI open on the
same or different computers can significantly diminish the rc_visard’s performance. The Web GUI is meant for
configuration and validation, not to permanently monitor the rc_visard.

11.4 Camera-image issues

The camera image is too bright

• If the rc_visard is in manual exposure mode, decrease the exposure time (see Parameters, Section 6.1.3), or

• switch to auto-exposure mode (see Parameters, Section 6.1.3).

The camera image is too dark

11.3. Connectivity issues 134

• If the rc_visard is in manual exposure mode, increase the exposure time (see Parameters, Section 6.1.3), or

• switch to auto-exposure mode (see Parameters, Section 6.1.3).

The camera image is too noisy

Large gain factors cause high-amplitude image noise. To decrease the image noise,

• use an additional light source to increase the scene’s light intensity, or

• choose a greater maximal auto-exposure time (see Parameters, Section 6.1.3).

The camera image is out of focus

• Check whether the object is too close to the lens and increase the distance between the object and the lens
if it is.

• Check whether the lenses are dirty and clean them if they are (see Lens cleaning, Section 9.1).

• If none of the above applies, a severe hardware problem might exist. Please contact support (Section 12).

The camera image is blurred

Fast motions in combination with long exposure times can cause blur. To reduce motion blur,

• decrease the motion speed of the rc_visard,

• decrease the motion speed of objects in the field of view of the rc_visard, or

• decrease the exposure time of the cameras (see Parameters, Section 6.1.3).

The camera image is fuzzy

• Check whether the lenses are dirty and clean them if so (see Lens cleaning, Section 9.1).

• If none of the above applies, a severe hardware problem might exist. Please contact support (Section 12).

The camera image frame rate is too low

• Increase the image frame rate as described in Parameters (Section 6.1.3).

• The maximal frame rate of the cameras is 25 Hz.

11.5 Depth/Disparity, error, and confidence image issues

All these guidelines also apply to error and confidence images, because they correspond directly to the disparity
image.

The disparity image is too sparse or empty

• Check whether the camera images are well exposed and sharp. Follow the instructions in Camera-image
issues (Section 11.4) if applicable.

• Check whether the scene has enough texture (see Stereo matching, Section 6.2) and install an external
pattern projector if required.

• Increase the Disparity Range and decrease the Minimum Distance (Section 6.2.4).

• Increase the Maximum Distance (Section 6.2.4).

• Check whether the object is too close to the cameras. Consider the different depth ranges of the rc_visard
variants as specified in the device’s technical specification (Section 3.2).

• Decrease the Minimum Confidence (Section 6.2.4).

• Increase the Maximum Depth Error (Section 6.2.4).

• Choose a lesser Disparity Image Quality (Section 6.2.4). Coarser resolution disparity images are generally
less sparse.

• Check the cameras’ calibration and recalibrate if required (see Camera calibration, Section 6.6).

11.5. Depth/Disparity, error, and confidence image issues 135

The disparity images’ frame rate is too low

• Check and increase the frame rate of the camera images (see Parameters, Section 6.1.3). The frame rate of
the disparity image cannot be greater than the frame rate of the camera images.

• Choose a lesser Disparity Image Quality (Section 6.2.4). High-resolution disparity images are only available
at about 3 Hz. Full 25 Hz can only be achieved for low-resolution disparity images as described in the
technical specifications (Section 3.1).

• Decrease the Disparity Range and increase the Minimum Distance (Section 6.2.4) as much as possible for
the application.

• Decrease the Median filtering value (Section 6.2.4).

The disparity image does not show close objects

• Check whether the object is too close to the cameras. Consider the depth ranges of the rc_visard variants as
described in the technical specifications (Section 3.2).

• Increase the Disparity Range (Section 6.2.4).

• Decrease the Minimum Distance (Section 6.2.4).

The disparity image does not show distant objects

• Increase the Maximum Distance (Section 6.2.4).

• Increase the Maximum Depth Error (Section 6.2.4).

• Decrease the Minimum Confidence (Section 6.2.4).

The disparity image is too noisy

• Increase the Segmentation value (Section 6.2.4).

• Increase the Fill-In value (Section 6.2.4).

• Increase the Median filtering value (Section 6.2.4).

The disparity values or the resulting depth values are too inaccurate

• Decrease the distance between the rc_visard and the scene. Depth-measurement error grows quadratically
with the distance from the cameras.

• Check whether the scene contains repetitive patterns and remove them if it does. They could cause wrong
disparity measurements.

• Check whether the chosen rc_visard variant is correct for the application. Particularly consider the different
depth ranges as described in the technical specifications (Section 3.2).

The disparity image is too smooth

• Decrease the Median filtering value (Section 6.2.4).

• Decrease the Fill-In value (Section 6.2.4).

The disparity image does not show small structures

• Decrease the Segmentation value (Section 6.2.4).

• Decrease the Fill-In value (Section 6.2.4).

11.6 Dynamics issues

State estimates are unavailable

• Check in the Web GUI that pose estimation has been switched on (see Parameters, Section 6.4.1).

• Check in the Web GUI that the update rate is about 200 Hz.

• Check the Logs in the Web GUI for errors.

11.6. Dynamics issues 136

The state estimates are too noisy

• Adapt the parameters for visual odometry as described in Parameters (Section 6.4.1).

• Check whether the camera pose stream has enough accuracy.

Pose estimation has jumps

• Has the SLAM component been turned on? SLAM can cause jumps when reducing errors due to a loop
closure.

• Adapt the parameters for visual odometry as described in Parameters (Section 6.4.1).

Pose frequency is too low

• Use the real-time pose stream with a 200 Hz update rate. See Stereo INS (Section 6.5).

Delay/Latency of pose is too great

• Use the real-time pose stream. See Stereo INS (Section 6.5).

11.7 GigE Vision/GenICam issues

No images

• Check that the components are enabled. See ComponentSelector and ComponentEnable in Important
GenICam parameters (Section 8.1.1).

11.7. GigE Vision/GenICam issues 137

12 Contact

12.1 Support

For support issues, please see http://www.roboception.com/support or contact support@roboception.de.

12.2 Downloads

Software SDKs, etc. can be downloaded from http://www.roboception.com/download.

12.3 Address

Roboception GmbH
Kaflerstrasse 2
81241 Munich
Germany

Web: http://www.roboception.com
Email: info@roboception.de
Phone: +49 89 889 50 79-0

138

http://www.roboception.com/support
mailto:support@roboception.de
http://www.roboception.com/download
http://www.roboception.com
mailto:info@roboception.de

13 Appendix

13.1 Pose formats

13.1.1 XYZABC format

The XYZABC format is used to express a pose by 6 values. 𝑋𝑌 𝑍 is the position in millimeters. 𝐴𝐵𝐶 are Euler
angles in degrees. The convention used for Euler angles is ZYX, i.e., 𝐴 rotates around the 𝑍 axis, 𝐵 rotates around
the 𝑌 axis, and 𝐶 rotates around the 𝑋 axis. The elements of the rotation matrix can be computed by using

𝑟11 = cos𝐵 cos𝐴,

𝑟12 = sin𝐶 sin𝐵 cos𝐴− cos𝐶 sin𝐴,

𝑟13 = cos𝐶 sin𝐵 cos𝐴+ sin𝐶 sin𝐴,

𝑟21 = cos𝐵 sin𝐴,

𝑟22 = sin𝐶 sin𝐵 sin𝐴+ cos𝐶 cos𝐴,

𝑟23 = cos𝐶 sin𝐵 sin𝐴− sin𝐶 cos𝐴,

𝑟31 = − sin𝐵,

𝑟32 = sin𝐶 cos𝐵, and
𝑟33 = cos𝐶 cos𝐵.

Note: The trigonometric functions sin and cos are assumed to accept values in degrees. The argument needs
to be multiplied by the factor 𝜋

180 if they expect their values in radians.

Using these values, the rotation matrix 𝑅 and translation vector 𝑇 are defined as

𝑅 =

⎛⎝ 𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

⎞⎠ , 𝑇 =

⎛⎝ 𝑋
𝑌
𝑍

⎞⎠ .

The transformation can be applied to a point 𝑃 by

𝑃 ′ = 𝑅𝑃 + 𝑇.

13.1.2 XYZ+quaternion format

The XYZ+quaternion format is used to express a pose by a position and a unit quaternion. 𝑋𝑌 𝑍 is the position in
meters. The quaternion is a vector of length 1 that defines a rotation by four values, i.e., 𝑞 = (𝑎 𝑏 𝑐 𝑤)𝑇

with ||𝑞|| = 1. The corresponding rotation matrix and translation vector are defined by

𝑅 = 2

⎛⎝ 1
2 − 𝑏2 − 𝑐2 𝑎𝑏− 𝑐𝑤 𝑎𝑐+ 𝑏𝑤
𝑎𝑏+ 𝑐𝑤 1

2 − 𝑎2 − 𝑐2 𝑏𝑐− 𝑎𝑤
𝑎𝑐− 𝑏𝑤 𝑏𝑐+ 𝑎𝑤 1

2 − 𝑎2 − 𝑏2

⎞⎠ , 𝑇 =

⎛⎝ 𝑋
𝑌
𝑍

⎞⎠ .

The transformation can be applied to a point 𝑃 by

𝑃 ′ = 𝑅𝑃 + 𝑇.

139

Note: In XYZ+quaternion format, the pose is defined in meters, whereas in the XYZABC format, the pose is
defined in millimeters.

13.1. Pose formats 140

HTTP Routing Table

/datastreams
GET /datastreams, 101
GET /datastreams/{stream}, 102
PUT /datastreams/{stream}, 103
DELETE /datastreams/{stream}, 104

/logs
GET /logs, 105
GET /logs/{log}, 105

/nodes
GET /nodes, 92
GET /nodes/{node}, 93
GET /nodes/{node}/parameters, 94
GET /nodes/{node}/parameters/{param}, 96
GET /nodes/{node}/services, 98
GET /nodes/{node}/services/{service}, 99
GET /nodes/{node}/status, 100
PUT /nodes/{node}/parameters, 95
PUT /nodes/{node}/parameters/{param}, 97
PUT /nodes/{node}/services/{service}, 100

/system
GET /system, 107
GET /system/license, 108
GET /system/rollback, 109
GET /system/update, 110
POST /system/license, 108
POST /system/update, 110
PUT /system/reboot, 109
PUT /system/rollback, 109

HTTP Routing Table 141

Index

Symbols
3D coordinates, 32

disparity image, 31
3D modeling, 32, 37

A
acceleration, 38

dynamics, 24
AcquisitionAlternateFilter

GenICam, 85
AcquisitionFrameRate

GenICam, 81
active partition, 129
angular

velocity, 38
AprilTag, 71

interfaces, 75
pose estimation, 73
re-identification, 75

auto exposure, 30

B
BalanceRatio

GenICam, 82
BalanceRatioSelector

GenICam, 82
BalanceWhiteAuto

GenICam, 82
baseline, 27
Baumer

IpConfigTool, 19

C
cables, 13, 131
CAD model, 11
calibration

camera, 44
camera to IMU, 38
hand-eye calibration, 25, 52
rectification, 27

calibration grid, 45
camera

calibration, 44
frame rate, 29
parameters, 28, 29
pose stream, 37
Web GUI, 28

camera calibration
monocalibration, 48
parameters, 49
services, 50
stereo calibration, 48

camera model, 27
camera to IMU

calibration, 38
transformation, 38

Chunk data
GenICam, 84

ComponentEnable
GenICam, 81

ComponentIDValue
GenICam, 81

components
rc_visard, 9

ComponentSelector
GenICam, 81

Confidence
GenICam image stream, 87

confidence, 32
minimum, 35

connectivity kit, 131
conversions

GenICam image stream, 88
cooling, 12
coordinate frames

dynamics, 38
mounting, 16
state estimation, 36

corners
visual odometry, 41, 43

correspondences
visual odometry, 41

D
data

IMU, 38
inertial measurement unit, 38

data model
REST-API, 111

data stream
dynamics, 37
imu, 38
pose, 37
pose_rt, 37, 38
REST-API, 101

Index 142

data-type
REST-API, 111

depth error
maximum, 35

depth image, 31, 31
Web GUI, 33

DepthDispRange
GenICam, 86

DepthFill
GenICam, 86

DepthMaxDepth
GenICam, 86

DepthMaxDepthErr
GenICam, 86

DepthMedian
GenICam, 86

DepthMinConf
GenICam, 86

DepthMinDepth
GenICam, 86

DepthQuality
GenICam, 86

DepthSeg
GenICam, 86

detection
tag, 70

DHCP, 5, 19
dimensions

rc_visard, 10
discovery GUI, 19
Disparity

GenICam image stream, 87
disparity, 23, 27, 31
disparity error, 32
disparity image, 23, 31

3D coordinates, 31
frame rate, 34
parameters, 33
quality, 34
Web GUI, 33

disparity range, 35
GenICam, 86
visual odometry, 43

DNS, 5
download

log files, 130
dynamic state, 24
dynamics

acceleration, 24
coordinate frames, 38
data stream, 37
jump flag, 38
pose, 24
REST-API, 101
services, 38
velocity, 24
Web GUI, 41

dynamics stream, 37

E
egomotion, 24, 41
Error

GenICam image stream, 87
error, 32

hand-eye calibration, 57
pose, 63

Ethernet
pin assignments, 13

exposure, 27
auto, 30
manual, 30

exposure region, 30
exposure time, 28, 30

maximum, 30
ExposureAuto

GenICam, 82
ExposureRegionHeight

GenICam, 85
ExposureRegionOffsetX

GenICam, 85
ExposureRegionOffsetY

GenICam, 85
ExposureRegionWidth

GenICam, 85
ExposureTime

GenICam, 82
ExposureTimeAutoMax

GenICam, 85
external reference frame

hand-eye calibration, 50

F
features

visual odometry, 43
fill-in, 35

GenICam, 86
firmware

mender, 127
rollback, 129
update, 127
version, 127

focal length, 27
focal length factor

GenICam, 85
FocalLengthFactor

GenICam, 85
fps, see frame rate
frame rate, 10

camera, 29
disparity image, 34
GenICam, 81
pose, 37, 38
visual odometry, 41

G
Gain

GenICam, 82

Index 143

gain, 27
gain factor, 28, 30
GenICam, 5

AcquisitionAlternateFilter, 85
AcquisitionFrameRate, 81
BalanceRatio, 82
BalanceRatioSelector, 82
BalanceWhiteAuto, 82
Chunk data, 84
ComponentEnable, 81
ComponentIDValue, 81
ComponentSelector, 81
DepthDispRange, 86
DepthFill, 86
DepthMaxDepth, 86
DepthMaxDepthErr, 86
DepthMedian, 86
DepthMinConf, 86
DepthMinDepth, 86
DepthQuality, 86
DepthSeg, 86
disparity range, 86
ExposureAuto, 82
ExposureRegionHeight, 85
ExposureRegionOffsetX, 85
ExposureRegionOffsetY, 85
ExposureRegionWidth, 85
ExposureTime, 82
ExposureTimeAutoMax, 85
fill-in, 86
focal length factor, 85
FocalLengthFactor, 85
frame rate, 81
Gain, 82
GevIEEE1588, 83
Height, 81
HeightMax, 81
LineSelector, 83
LineSource, 83
LineStatus, 83
LineStatusAll, 83
maximum depth error, 86
maximum distance, 86
median, 86
minimum confidence, 86
minimum distance, 86
PixelFormat, 81, 87
quality, 86
Scan3dBaseline, 84
Scan3dCoordinateOffset, 84
Scan3dCoordinateScale, 84
Scan3dDistanceUnit, 83
Scan3dFocalLength, 83
Scan3dInvalidDataFlag, 84
Scan3dInvalidDataValue, 84
Scan3dOutputMode, 83
Scan3dPrinciplePointU, 84
Scan3dPrinciplePointV, 84

segmentation, 86
timestamp, 87
Width, 81
WidthMax, 81

GenICam image stream
Confidence, 87
conversions, 88
Disparity, 87
Error, 87
Intensity, 87
IntensityCombined, 87

GevIEEE1588
GenICam, 83

GigE, 5
GigE Vision, 5, see GenICam

IP address, 19
GPIO

pin assignments, 14

H
hand-eye calibration

calibration, 25, 52
error, 57
external reference frame, 50
mounting, 50
parameters, 58
robot frame, 50
slot, 54

Height
GenICam, 81

HeightMax
GenICam, 81

host name, 19
housing temperature

LED, 12
humidity, 12

I
image

timestamp, 33, 87
image features

visual odometry, 41
image noise, 30
IMU, 5, 24

data, 38
inertial measurement unit, 41

imu
data stream, 38

inactive partition, 129
inertial measurement unit

data, 38
IMU, 41

INS, 5, 24
installation

rc_visard, 18
Intensity

GenICam image stream, 87
IntensityCombined

Index 144

GenICam image stream, 87
interfaces

AprilTag, 75
QR code, 75
tag detection, 75

IP, 5
IP address, 5, 18

GigE Vision, 19
IP54, 12
IpConfigTool

Baumer, 19

J
jump flag

dynamics, 38
SLAM, 38

K
keyframes, 41

visual odometry, 41, 43

L
LED, 18

colors, 133
housing temperature, 12

linear
velocity, 38

LineSelector
GenICam, 83

LineSource
GenICam, 83

LineStatus
GenICam, 83

LineStatusAll
GenICam, 83

Link Local, 5, 19
log files

download, 130
logs

REST-API, 105
loop closure, 63

M
MAC address, 5, 19
manual exposure, 30
maximum

depth error, 35
exposure time, 30

maximum depth error, 35
GenICam, 86

maximum distance, 35
GenICam, 86

mDNS, 5
median, 35

GenICam, 86
mender

firmware, 127
minimum

confidence, 35
minimum confidence, 35

GenICam, 86
minimum distance, 35

GenICam, 86
monocalibration

camera calibration, 48
motion blur, 30
mounting, 15

hand-eye calibration, 50

N
network cable, 131
network configuration, 18
node

REST-API, 90
NTP, 5

synchronization, 125

O
operating conditions, 12

P
parameter

REST-API, 91
parameters

camera, 28, 29
camera calibration, 49
disparity image, 33
hand-eye calibration, 58
services, 30
visual odometry, 41

pin assignments
Ethernet, 13
GPIO, 14
power, 14

PixelFormat
GenICam, 81, 87

point cloud, 32
pose

data stream, 37
dynamics, 24
error, 63
frame rate, 37, 38
timestamp, 37

pose estimation, see state estimation
AprilTag, 73
QR code, 73

pose stream, 37, 38
camera, 37

pose_rt
data stream, 37, 38

power
pin assignments, 14

power cable, 131, 132
power supply, 12, 132
protection class, 12
PTP, 5

Index 145

synchronization, 83, 125

Q
QR code, 71

interfaces, 75
pose estimation, 73
re-identification, 75

quality
disparity image, 34
GenICam, 86

quaternion
rotation, 38

R
rc_dynamics, 122
rc_visard

components, 9
installation, 18

re-identification
AprilTag, 75
QR code, 75

real-time pose, 37
reboot, 129
rectification, 27
reset, 19
resolution, 10
REST-API, 88

data model, 111
data stream, 101
data-type, 111
dynamics, 101
entry point, 89
logs, 105
node, 90
parameter, 91
services, 91
status value, 91
system, 105
version, 89

robot frame
hand-eye calibration, 50

rollback
firmware, 129

rotation
quaternion, 38

S
Scan3dBaseline

GenICam, 84
Scan3dCoordinateOffset

GenICam, 84
Scan3dCoordinateScale

GenICam, 84
Scan3dDistanceUnit

GenICam, 83
Scan3dFocalLength

GenICam, 83
Scan3dInvalidDataFlag

GenICam, 84
Scan3dInvalidDataValue

GenICam, 84
Scan3dOutputMode

GenICam, 83
Scan3dPrinciplePointU

GenICam, 84
Scan3dPrinciplePointV

GenICam, 84
SDK, 5
segmentation, 35

GenICam, 86
self-calibration, 44
Semi-Global Matching, see SGM
sensor fusion, 41
services

camera calibration, 50
dynamics, 38
parameters, 30
REST-API, 91
visual odometry, 43

SGM, 5, 23, 31
Simultaneous Localization and Mapping, see SLAM
SLAM, 5, 63

jump flag, 38
Web GUI, 63

slot
hand-eye calibration, 54

spare parts, 132
specifications

rc_visard, 10
state estimate, 37
state estimation

coordinate frames, 36
status value

REST-API, 91
stereo calibration

camera calibration, 48
stereo camera, 27
stereo matching, 23
Swagger UI, 118
synchronization

NTP, 125
PTP, 83, 125
time, 83, 125

system
REST-API, 105

T
tag detection, 70

families, 71
interfaces, 75
pose estimation, 73
re-identification, 75

temperature range, 12
texture, 31
time

synchronization, 83, 125

Index 146

timestamp, 27
GenICam, 87
image, 33, 87
pose, 37

transformation
camera to IMU, 38

translation, 37
tripod, 15

U
UDP, 5
update

firmware, 127
URI, 6
URL, 6

V
velocity

angular, 38
dynamics, 24
linear, 38

version
firmware, 127
REST-API, 89

visual odometry, 24, 41
corners, 41, 43
correspondences, 41
disparity range, 43
features, 43
frame rate, 41
image features, 41
keyframes, 41, 43
parameters, 41
services, 43
Web GUI, 41

VO, see visual odometry

W
Web GUI, 21

camera, 28
depth image, 33
disparity image, 33
dynamics, 41
logs, 130
SLAM, 63
update, 127
visual odometry, 41

white balance, 30
Width

GenICam, 81
WidthMax

GenICam, 81

X
XYZ+quaternion, 6
XYZABC format, 6

Index 147

	Introduction
	Overview
	Warranty
	Applicable standards
	Glossary

	Safety
	General warnings
	Intended use

	Hardware specification
	Scope of delivery
	Technical specification
	Environmental and operating conditions
	Power-supply specifications
	Wiring
	Mechanical interface
	Coordinate frames

	Installation
	Installation and configuration
	Power up
	Network configuration
	Discovery of rc_visard devices
	Web GUI

	The rc_visard in a nutshell
	Stereo vision
	Sensor dynamics
	Calibration relative to a robot

	Software components
	Stereo camera
	Stereo matching
	Sensor dynamics
	Visual odometry
	Stereo INS
	Camera calibration
	Hand-eye calibration

	Optional software components
	SLAM
	IO and Projector Control
	TagDetect
	ItemPick

	Interfaces
	GigE Vision 2.0/GenICam image interface
	REST-API interface
	The rc_dynamics interface
	Time synchronization

	Maintenance
	Lens cleaning
	Camera calibration
	Updating the firmware
	Restoring the previous firmware version
	Rebooting the rc_visard
	Updating the software license
	Downloading log files

	Accessories
	Connectivity kit
	Wiring
	Spare parts

	Troubleshooting
	LED colors
	Hardware issues
	Connectivity issues
	Camera-image issues
	Depth/Disparity, error, and confidence image issues
	Dynamics issues
	GigE Vision/GenICam issues

	Contact
	Support
	Downloads
	Address

	Appendix
	Pose formats

	HTTP Routing Table
	Index

